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Abstract. Convolutional Neural Networks (CNNs) have achieved much success
mainly in areas of computational vision, such as image recognition,
classification, object segmentation, and more. The learning process of this type
of network generally requires large volumes of data, commonly high-resolution
images, and the adjustment of a large number of parameters. The lack of
control over the learning process of the model can lead to various problems.
One of them is overfitting, which leads the network to a situation where
it loses generality, making incorrect forecasts in the presence of new data.
Another very common problem is its speed of convergence, which depends on
the parameterization of the network: selection of the number of filters per
layer, number of convolution layers, and more, where a fine adjustment is very
important to avoid excessive computational costs. Understanding the origins
of these problems and the ways to prevent them from happening is essential
for a successful design. In this paper, we analyze these problems by designing
a multiclass classifier among ten categories of images from the Caltech 256
dataset, based on the metrics of accuracy, precision, recall, and loss. To do so,
Python 3.6, TensorFlow and Keras libraries were used on an RTX 2060 GPU.

1. Introduction
In recent years, Convolutional Neural Networks (CNNs) have been achieving
successful results in various areas of knowledge [Gong and Zhang 2016] [Yue 2017]
[Luo et al. 2018] [Zolfaghari et al. 2018], mainly in computational vision area with
patterns detection for classification, localization and image objects segmentation
[Ge et al. 2018][Liu et al. 2018]. CNNs have become one of the state-of-the-art methods
for image classification in various domains, especially on large datasets such as ImageNet.
The success in creating a classification model, as well as its rapid convergence, depends on
a good architecture design, which in turn depends on the dataset used during the training
and the required output function.

CNN architectures for classification consist of two different functional
architectural parts, which we call functional blocks. The first block is responsible for
the image feature extraction and the second for classification. In this paper, we explore
the design of these two functional blocks. The first by creating convolutional layers from



scratch, adjusting the number of layers (network depth), the number of filters per layer,
and other aspects. We also use transfer learning to optimize robust architectures in feature
extraction, allowing rapid convergence and performance improvements. As indicated in
[Menegola et al. 2017] and [Shin et al. 2016], transfer learning has shown good results
and is a more advantageous alternative, since it renounces the time it would devote
to train a robust neural network from scratch for a specific domain. [Luo et al. 2018]
explore the state of the art in the task of image classification, which consists of the use of
architectures based on deep learning for the realization of transfer learning. The second
functional block was explored by designing Multi-Layer Perceptrons (MLP) and Support
Vector Machines (SVM) models. Nevertheless, CNNs may suffer overfitting during their
learning process [Elleuch et al. 2016] [Xie et al. 2016], and how to avoid this problem is
a constantly research issue.

Many regularization techniques have been developed to prevent neural
networks from overfitting, e.g., L2 regularization [Krizhevsky et al. 2009], Dropout
[Hinton et al. 2012], which discards randomly-selected activation’s on the layers
during training, DropConnect [Wan et al. 2013], which sets randomly-selected weights
to zero during training, data augmentation, which manipulates the input data
[Cireşan et al. 2010][Krizhevsky et al. 2012a], early stopping [Plaut et al. 1986], and
DisturbLabel, which imposes the regularization within the loss layer [Xie et al. 2016].
In many cases, the use of a single technique is not enough to avoid network overfitting,
so it is important to know how to recognize when networks start to overfit as well as infer
the possible solutions.

In this paper, we present a case study of the overfitting process in multi-class
classifiers. We develop several different architectures, identifying when they overfit as
well as the possible solutions in each case. To do so, Caltech 256 dataset was used,
yet we selected only the ten classes with most instances. The remainder of this paper is
organized as follows. Firstly, Section 2 presents materials and methods used, the dataset
description, background concepts and some existing CNNs architectures. Next, Section
3 presents the experiments performed and a brief discussion on the presented methods
based on their quantitative results on the mentioned dataset. At last, Section 4 draws
conclusions about this work and presents our future research directions.

2. Materials and Methods

This section describes the main characteristics of the architectures used in the design of
the multi-class image classification model for Caltech 256 dataset.

2.1. Dataset Description

We evaluated our proposed network structures on dataset Caltech 256
[Griffin et al. 2007]. It is a set of 30607 images divided into 256 categories of objects
that can be used in the development of different approaches in image recognition tasks
[Puthenputhussery et al. 2017][Bodesheim et al. 2015][Banerji et al. 2013]. Caltech
256 has natural and artificial objects in various environments. Images can be found
in different lighting conditions, positions, contexts, and sizes. 3398 (75% of the total)
images were used for training and 1127 (25% of total) for testing. In this work, the ten
categories with the highest number of images were chosen. All images were resized,



since they have original different dimensions and some architectures, used in this work,
require specific dimensions.

2.2. Data Augmentation

Deep learning methods need a large amount of data during training. Then, to increase
the dataset used, we also use data augmentation [Van Dyk and Meng 2001]. Data
augmentation consists of applying image processing operations on each image of the
dataset, generating five, ten, or more, new images from existing training data. In this work,
all images were normalized and new images were generated by staggering, zooming and
reversing the training images.

2.3. Convolutional Neural Networks

CNNs differ from classical perceptrons formulation by combining three architectural
ideas to ensure some degree of shift, scale and distortion invariance: local receptive
fields, shared weights and spatial sub-sampling [LeCun et al. 1999]. The main functional
modules of any CNN are separated by layers, which are: an input layer, convolutional
layer, pooling layer and a regular multilayer neural network called fully connected layer.

The input is an image with dimension [width x height x depth]. The depth
corresponds to the color channels of the images: in the presence of a colored image,
it consists of three channels (RGB), while in a grayscale image the depth is only one.

The convolutional layer is a linear model used to extract the input signal pattern.
Its purpose is to generate feature maps using linear convolutional filters through a
nonlinear activation function. Nonlinear Rectified Linear Units (ReLU) activation
function is often used in the hidden layers, while SoftMax activation function is used
in the final layer. By stacking layers of linear and nonlinear functions, we can detect a
wide range of patterns and accurately predict a label for a given image. SoftMax is often
used to produce a discrete probability distribution vector and the output corresponds to
the probability that a given image corresponds to a particular class.

After the convolution layers, pooling layers are used to reduce the dimensions of
feature maps and, consequently, reduce computation cost and avoid overfitting, besides
creating invariance to small changes and local distortions. There are several forms of
pooling applicable to a feature map: max pooling (selects a maximum value), average
pooling (takes the average), and more. At the end, we have a fully connected layer, which
is responsible for tracing the decision path between classes, followed by classification
functions that influence the learning of filters and, consequently, the network results.

CNNs may also contain the so-called local contrast normalization layers (LCN),
which are positioned at the output of the pooling layers and normalize the contrast of an
image in a non-linear way. Instead of a global normalization (i.e., considering the whole
image), LCN applies normalization over local image regions, considering each pixel at
a time. Normalization may correspond to subtracting the neighborhood mean from a
particular pixel and dividing by the variance of the pixels values of that neighborhood.
This transformation equips CNNs with the invariance of brightness, useful property in the
context of object recognition in images [Jarrett et al. 2009].



2.3.1. VGG

VGG is a deep CNN model, developed by [Simonyan and Zisserman 2014], to model the
ImageNet 2014 for the Large Scale Visual Recognition Challenge (ILSVRC-2014). VGG
consists of sixteen convolutional layers and impresses by its uniform architecture. It is
similar to AlexNet [Krizhevsky et al. 2012b], but with 3x3 convolutions. AlexNet is a
deep CNN model that consists of five convolutional layers, where ReLU layer is applied
after each convolutional layer. The first, second and fifth layers contain max-pooling
layers.

2.3.2. Inception-V2

Inception-V2 is a CNN model, developed by [Szegedy et al. 2016], to model ImageNet
2012 for ILSVRC-2012. Inception network was an important milestone in the
development of CNN classifiers. Prior to its inception (pun intended), most popular CNNs
just stacked convolutional layers deeper and deeper, hoping to get better performance.
The Inception network, on the other hand, was complex (heavily engineered). It used
a lot of tricks to push performance; both in terms of speed and accuracy. Its constant
evolution lead to the creation of several versions of the network. The Inception networks
come to solve the difficulty of selecting kernels size of convolution layers, allowing to use
several sizes at the same time, which facilitates the features detection, independently of
the objects dimensions in the images.

2.3.3. ResNet

ResNet is a CNN model developed by [He et al. 2016], to model ImageNet 2015 for
ILSVRC 2015. Instead of learning a direct mapping x → y with a function H(x), it
defines a residual function F (x) = H(x)−x, which may be refracted in H(x) = F (x)+x,
where F(x) e x represent the stacked nonlinear layers. ResNet models are implemented
with single layer jumps. Jump layers avoid the vanishing gradient problem, reusing
activations from an earlier layer until the adjacent layer learns its weights. The use of
few layers simplifies network training in the initial stages, that speeds up learning by
reducing the impact of vanishing gradients as there are fewer layers to propagate. The
network gradually restores the skipped layers as you learn the resource space.

2.4. Transfer Learning

Learning a new model from scratch requires a huge amount of data and high processing
power. Therefore, pre-trained networks are used as the starting point on many tasks and
can also be used as feature extractors by just removing its fully-connected layer, which is
responsible for learning specific details of the dataset with which the network was trained.

Transfer learning for image classification tasks consists of using the synaptic
weights configured by a network to recognize and extract the characteristics of a different
dataset from the one that it was previously trained. This alternative is very attractive,
mainly when the dataset to be classified has similar characteristics to another dataset used
to train a pre-trained network and when we have to deal with a training dataset that is not



big enough. In addition to this, a robust feature extraction is achieved without the need to
waste time in parameterizing a network from scratch [Yosinski et al. 2014].

3. Experiments and Discussion

In order to assess the performance and robustness of CNNs, we conduct experiments on
the dataset described in Section 2.1 to study the performance of different architectures.
Then, to check effectiveness of fine-tuned networks, we use VGG-16, VGG-19, Inception
V2 e ResNet 50 models, fine-tuned using ImageNet dataset [Deng et al. 2009]. For our
experiments, we used Keras and TensorFlow in Python 3.6 and RTX 2060 GPU.

3.1. Increasing Network Depth

Initially, we have created a CNN consisting of three convolution layers followed by
max-pooling layers of 2x2 dimension. Each convolution litter consists of 64 filters of
3x3 dimension. At the end, was used a fully connected layer with 500 neurons. In the
training process, all weights were randomly initialized, Adam optimizer algorithm and
learning rate of 0.0005 were used. This first network presents an accuracy of 76%, and as
seen in Figures 1a and 1b, it’s susceptible to overfitting problem. The class distribution
for training and test datasets, can be seen in Table 1.

Table 1. All the instances by class for training and test datasets.

Class Training Test

Clutter 621 206
Airplane 800 200

Motorcycle 798 199
Face 435 108

T-Shirt 358 89
Hammock 285 71
Snooker 278 69
Horse 270 67
Ladder 242 60
Bathtub 232 58

Increasing the dataset through data-augmentation and adding a Dropout layer of
50% at the end of the fully connected layer has boosted the accuracy by 4% during tests.
It’s still susceptible to overfitting after epoch 10. We could use early stopping before
epoch 10 and save the current model, avoiding the final model to get to epoch 20, when
it loses generality. Instead, we decided to explore the parametrization of the network in
order to get greater precision and accuracy. Our experiments have shown that increasing
the number of filters per layer doesn’t provide significantly superior results and also slows
down the learning process. For that reason, another strategy used to avoid overfitting was
to decrease the number of neurons in the MLP output by five times, which eliminates the
problem during the 20 training epochs, as shown in Figures 1c and 1d. As consequence,
we obtain a bit lower accuracy of 78% during tests.



Figure 1. (a) and (b) show results using a fully connected layer with 500 neurons.
For accuracy and precision results, it’s susceptible to overfitting problems.
When the number of neurons in the MLP output layer is decreased by five
times, the overfitting problem is eliminated, as shown in (c) and (d).

3.2. Using Transfer Learning
In order to study how CNNs are susceptible to overfitting, we used VGG-16, VGG-19,
Inception-V2 and ResNet 50 models pre-trained using ImageNet dataset, which consists
of 1000 different classes. We choose VGG-16 because it is the inspiration for the next
versions of existing architectures. VGG-19 has the same concept of VGG-16, except
for its depth of 19 layers, and was used to analyse how depth influences in the results.
Inception-V2 and ResNet 50 have been attractive for introducing a new concept on CNNs.

It is in the fully connected layer that specific information about the dataset is
learned, so we decided to replace their outputs by a MLP dense layer of 100 neurons and
used SoftMax activation function to calculate the ten probabilities of a image belongs to
of the 10 categories. The first layers work as generic extractors which can be used for
different tasks. It was possible to use pre-trained networks because ImageNet is similar
to Caltech 256. Training from scratch would be very computationally expensive, so we
trained only the aggregate layers in the output classification.

The results obtained for VGG-16 are very similar to those obtained for VGG-19,
maybe because the only difference between the two is their depths. VGG-16 was a bit
faster than VGG-19 for 50 epochs, for example. VGG-16 reaches an accuracy of 85%
while VGG-19 has an accuracy of 83% with the same processing time. Inception-V2 and



ResNet 50 are faster and have more precision.

All networks had achieve high levels of precision, accuracy and low levels of error,
but ResNet 50 has the finer and robustest behavior, as shown in Figure 2, and reaches the
highest level of precision with faster convergence and shorter processing time. It performs
20 epochs in 17 minutes on GPU.

Figure 2. ResNet50 model accuracy, precision, loss, and recall using transfer
learning and SoftMax output function.

3.3. Using SVM in the Output Layer

As CNNs are composed of two basic parts, feature extraction and classification, we
decided to explore CNNs as features extractors and use a SVM linear model as classifier.
We also wanted to evaluate the performance of SVM working with a more complex,
robust and good performance extractor.

The results using ResNet50 remained great when using SVM as classifier.
Inception-V2 has a significant improvement in its results when SVM is used for
classification. Figure 3 shows the results for ResNet50 and Figure 4 shows the results
for Inception-V2. Analysing the graphs, we can see that the great advantage in using
SVM, instead of a fully connected network, for classification is in time of training and
execution of the tests. Table 2 compares the results of the best models trained throughout
our study and also compares the time of training and testing for each model.



Figure 3. ResNet model accuracy, precision, recall, and MAE during training and
test using SVM as its final layer.



Figure 4. InceptionV2 model accuracy, precision, recall, and MAE during training
and test using SVM as its final layer.

Table 2. Comparison of different architectures used by accuracy, precision,
recall, loss, MAE and time consumed.

Architecture Accuracy Precision Recall Loss MAE Time Consumed
Basic CNN 81% 86% 79% 0,7 0,05 10 min
TL-VGG-16 85% 86% 77% 0,4 0,03 39 min
TL-VGG-19 83% 85% 76% 0,5 0,04 42 min

TL-InceptionV2 94% 95% 93% 0,19 0,015 33 min
ResNet 50 96% 97% 97% 0,2 0,01 17 min

ResNet50 + SVM 96% 96% 96% 0,9 0,01 16 min
TL-InceptionV2+SVM 96% 95% 96% 0,15 0,09 22 min

4. Conclusion and Future Work

When developing a Deep Neural Network model, we must take into account overfitting
problem, and avoiding this problem is important so the network can correctly generalize
based on the examples learned. In this paper, we evaluate how some multi-class classifier
architectures behave when facing the problem and present different strategies that can be
applied to handle overfitting.

We also show that the success of a multi-class classifier design depends on both
the architecture responsible for extracting features and the output layer for classification.
Some configurations of the two functional parts were evaluated obtaining the best results
using ResNet for feature extraction and SVM for image classification.



As expected, the deepest network, in terms of convolutional layers, improves
the results in image classification. This happens because as we increase the number
of convolution layers, we manage to extract more complex characteristics of the data,
which helps the output layers to distinguish better between classes, especially when we
have large numbers of output classes. On the other hand, deeper networks are more
computationally expensive.

In the future, we plan to use more tests to also analyze the performance of
more recent CNNs: use the winners of the last edition of ImageNet Large Scale Visual
Recognition Challenge (ILSVRC), like NUS Qihoo UIUC DPNs (VID), winner of
classification and object localization tasks in ILSVRC 2017. We could also try to boost
the performances of our models using a bigger dataset during training, since our majority
class has only 827 images. Furthermore, the design of MLPs used in the last layer can
also be explored, in this work, our MLP consisted of 256 neurons and then was reduced
to 100 to avoid overfitting, so we believe it can reach a best fit.
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