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Abstract. The anomaly detection task is a well know problem being researched
among a variety of areas, including machine learning. The task is to identify
data patterns that have a non expected behaviour, that can be a malicious data
sent by an attacker or a unexpected valid behaviour, in both cases the anomaly
need to be identified. With the advance of deep learning based techniques show-
ing that this class of algorithms can learn high-dimensional and complex data
patterns, naturally it became an option to the anomaly detection task. Recent
researches in literature are using a sub-field of deep learning algorithms named
Generative Adversarial Networks for predicting anomalous samples, since the
original method can learn the data distribution. These new techniques make
some changes for the anomaly detection task, and this work provides a briefly
review on these methods and provides a comparison with well known methods.

1. Introduction

The data volume generated by users in web and mobile applications is increasing every
year at an exponential rate, and based on that data, systems are being developed to learn
data patterns and take some action to improve the user experience, make decisions for
the business, avoid pitfalls through spam filter, among others. The performance of these
systems can be affected if some of the training data used to create it contains some kind
of anomaly. The performance of these systems depends a lot on the quality of the data,
therefore malicious or corrupted data must be identified, these inconsistencies are also
called anomalies.

An anomaly is a pattern or a data point that does not follow the expected behaviour
[Chandola et al. 2009]. The behaviour can be explicit model as a set of rules (expert sys-
tems) or they can be modeled based on a dataset, for example methods based on clustering
[Alguliyev et al. 2017] can be directly used for tabular data, but they struggle when used
with image data because the directly use of the distance of the pixels do not yields context
information, such as the objects presented in the image.

The detection of anomalies can be applied in a variety of applications and also can
play a critical role in a product, e.g. a bank can detect if a user had his credit card stolen or
cloned by analyzing his last purchases, if it does not follow the user purchase pattern it can
be considered as a potential fraudulent operation and the purchased can be cancelled by
the bank, bringing more security to their clients. Another example is an anomalous data
traffic pattern in a computer network that could mean that a hacked computer is trying to
steal confidential data.



Deep learning algorithms can model complex non-linear data patterns and
have been presenting astonishing results in a variety of areas [Brock etal. 2018],
[Shetty et al. 2018], [Zhang et al. 2018]. One of deep learning sub-fields is the Generative
Adversarial Networks [Goodfellow et al. 2014] technique that learns to model a genera-
tor through an adversarial learning, this algorithm have shown great results on capturing
the data distribution and reproducing it, such as presented by [Curt6 et al. 2017]. Since
GANSs can learn how to represent the data distribution, some recent researches present
methods to use that representation to detect anomalies through a plethora of different ap-
proaches. This work aims to expatiate over this recently proposed methods and present
some discussion on their effectiveness.

2. Related Work

The subject of study of anomaly or novelty detection have been surveyed in a lot of dif-
ferent approaches. [Hodge and Austin 2004] provide a comprehensive study of classi-
cal techniques for identifying outliers using statistics and machine learning. An exten-
sive review in cyber-security for detecting intruders in a computer network using deep
learning is provided by [Kwon et al. 2017] Deep learning approaches also have been
studied in fraud-detection problem by [Adewumi and Akinyelu 2017]. With image data,
[Kiran et al. 2018] shows deep learning approaches, including a small review on GAN-
based methods.

Although there are surveys that briefly cites GAN-based approaches, there is a
lack of a comprehensive study on those methods, presenting their advantages and disad-
vantages and a methodological process for benchmarking. This work aims to fill that gap
and brings a comprehensive reference for who wants to apply this technique on his own
problem.

2.1. Generative Adversarial Network

The Generative Adversarial Networks [Goodfellow et al. 2014] work proposes a neural
network training framework for estimating a generative model with a adversarial training.
In the algorithm two neural networks are simultaneously trained, the generator network
that learns to capture the data distribution during training, and outputs an artificial sample,
and the discriminator that learns to identify inputs that comes from the original dataset or
from the generator’s output.

In this simultaneously training process, the generator receives a random gaussian
noise vector also named as a latent vector, and outputs a matrix representing a new data
point, then the discriminator receives fake samples produced by the generator and real
samples from the original dataset for predict if the incoming sample is from the training
data or not. This process can be visualized in the Figure 1.

The generator objective is to maximize the probability of the discriminator make
a wrong prediction, and the discriminator objective is to identify correctly if a sample is
original or artificially generated. This process is equal to a minimax game from game the-
ory [Goodfellow et al. 2014], and the optimum situation is to find the Nash equilibrium,
where the generator produces high quality data such that the discriminator can differenti-
ate them with a probability of 50%.
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Figure 1. GAN illustration
Source: [Silva 2018]

3. Anomaly Detection with Generative Adversarial Networks

In this section is discussed each method proposed to be studied, showing how the GAN
technique is applied for anomaly detection problems.

All of the methods studied relies on the generator network, that models the data
distribution based on the input latent vector, which is a representation of an artificial
sample in the latent space. In other words, the generator learns how to translate from
the latent representation into an image. Changing values in this latent vector yields to
modifying some aspect of the output. For example one position of the vector can represent
the size of an object in the scene. The neural network is able to learn how to make these
transitions. If we can gather this latent space representation for an existing original sample
and the same process to an anomalous sample, we might expect some differences in the
values of those vectors.

The original architecture of GAN does not provide a direct way to transform an
image to the latent vector, only the other way. In the following subsections we will discuss
each method and present how they transform this image to latent space as a latent vector.

3.1. AnoGAN

AnoGAN [Schlegl et al. 2017] is one of first methods introducing GANSs for the anomaly
detection task, which is based on a normal GAN training utilizing the Deep Convo-
lutional Generative Adversarial Networks [Radford et al. 2015] architecture, using only
non-anomaly samples during training. In test time each image sample needs to be mapped
into latent space through an optimization process, which minimizes a loss function that
is a weighted average of the similarity of the generated image and the original, and a
discriminator score, that is calculated with the L, distance of an intermediate layer in the
discriminator network. This average is the anomaly score utilized. A high score is ex-
pected to be an anomaly, and a low score is likely to be a non-anomalous sample. Since
this work relies on an optimization problem on test time, it has a high computational cost.

3.2. Adversarially Learned Anomaly Detection

The Adversarially Learned Anomaly Detection (ALAD) [Zenati et al. 2018] paper uses
the Bidirectional Generative Adversarial Networks (BiGANSs) [Donahue et al. 2016] that
enable the model to learn the mapping from a sample into a feature space, analogous to
the latent space of standard GANS, this feature space is learned with autoencoders in the



BiGAN architecture. With this representation of features, the authors propose some meth-
ods for calculating the distance between samples in this representations, these equations
are defined below:

Ly = ||z — 2], (D

Ly = ||z — 2|l @)

In L, and L, the direct distance between the original sample x and the artificial
sample z’ after feed-forward in the generator is computed

Logits = log (D (v,2')) 3)

The Logits is defined by the log of the output of the D, discriminator network.

Features = || fou(7, ) — foo (l’,xl)Hl )

The Features calculates the L, distance of the difference between the values of
the feature layer f,, presented in D,, for both = and 2.

The authors elaborates that using the direct output of the discriminator D,, will
lead to random predictions, since in an optimal case, the encoder and decoder will capture
the data distribution perfectly, in this case the discriminator will not be able to distinguish
real and reconstructed samples.

Instead of using the direct output of the discriminator, the authors proposed the
Features measurement that gives the best anomaly score, showing that the features in
the latent space yields important information about the data.

3.3. Fence GAN

In the work of Fence GAN [Phuc Ngo et al. 2019] the authors highlights that the standard
GAN objective is to make the distribution of the generators output equal to the distribution
of the original data, which is good for recreating new samples that are similar to the train
data, but it is not sufficient for the anomaly detection problem.

The authors hypotheses that if during training the generators only produces sam-
ples in the boundary of the data distribution, the discriminator will acts as an anomaly
classifier. To achieve that constraint, both generator and discriminator loss functions are
modified.
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The generator loss function of FenceGAN is described by the Encirclement Loss
E'L and the Dispersion Loss D L. The Encirclement Loss will help the generator to pro-
duce data that lies on the boundary of the data distribution, based on the parameter «. The
Dispersion Loss helps reinforce that the all generated points lies in the boundary of the
data distribution.

With the generator producing data points that lies in the boundary of the data
distribution, then the discriminator loss function needs to be modified too, because it will
classify data points from the original data and data points that lies in the boundary.

1
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discriminator
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To prioritize classifying the original data correctly, the hyper-parameter v is in-
troduced in the discriminator loss function. The value of « ranges from [0, 1], with low
values the function will produce high values when the discriminator does not classify real
data points correctly, therefore it will learn the normal data distribution.

3.4. GANomaly

The GANomaly [Akcay et al. 2018] method is similar to ALAD [Zenati et al. 2018] ap-
proach, where the generator consists of encoder-decoder-encoder sub-networks, which
results in a direct feature space representation.

For calculating the anomaly score the reconstruction and feature matching losses
must be comined, which respectively calculates the difference of the input sample and
the generated sample, and the difference between the sample in the feature space and the
generated image, described by the following equation:

Ar) = [|Ge(2) — E(G(2))], ©)

Where 2 is an incoming data sample, Gz is the first encoder inside the generator
and E is the second encoder of the generator. Non-anomalous samples should yield into
a value close to 0, and anomalies should have greater values.

3.5. OCGAN

The OCGAN [Perera et al. 2019] hypotheses that when training auto-encoders with mul-
tiple classes, a straight path in the latent space can generate different classes, therefore
constraining the latent space to one specific class will produce high reconstruction errors
when evaluating samples that are not from the target class. To constrain the latent space
the authors propose a GAN architecture that uses two discriminators, a latent space net-
work that outputs a probability of a sample come from the restricted latent space, and a
visual discriminator that helps the model to generate high quality data without hurting the
performance on the anomaly detection task.



For detecting anomalies a classifier network tries to capture how great the input
image resembles content of the target class, so the input is the combination of the encoded
image and the target class.

4. Experiment

For evaluating the selected methods, two datasets have been selected, the MNIST contain-
ing 70.000 of hand-written digits and CIFAR-10 with 60.000 of different objects, where
both of them have 10 classes.

To working with the anomaly detection problem, each experiment used one class
as the anomaly and the nine others as normal data, consequently having much more non-
anomalous samples then the anomaly class. This process where executed for all classes
in both datasets.

The Cifar-10 have equally distributed samples, therefore each experiment have
6000 training anomalous samples, 54000 training non-anomalous samples, 1000 anoma-
lous test samples and 9000 non-anomalous test samples.

The data distribution of each experiment in the MNIST dataset can be visualized
in Table 1.

0 1 2 3 4 5 6 7 8 9
Training anomalies 5923 6742 5958 6131 5842 5421 5918 6265 5851 5949
Training non-anomalies 54077 53258 54042 53869 54158 54579 54082 53735 54149 54051
Test anomalies 980 1135 1032 1010 982 892 958 1028 974 1009

Test non-anomalies 9020 8865 8968 8990 9018 9108 9042 8972 9026 8991

Table 1. Training and test data distribution for each class on MNIST dataset

For providing a better comparison in the results, the kernel density estimation
(KDE) [Bishop 2006] method was selected as a baseline method, since it has shown great
results in the anomaly detection task [Jan Latecki et al. 2007]. This method is based on
estimation a probability density function of the training data, then incoming samples are
evaluated if they lies in the data distribution modeled by KDE.

For each evaluated method the hyper-parameters used are the best ones reported
by their authors. Each experiment where executed three times using different random
seeds, and the final result is the average of those three executions. The implementation
of ALAD!, AnoGAN?, FenceGAN? and GANomaly* is published at Github by their own
authors. The results from OCGAN and KDE are gathered from [Perera et al. 2019].

We used the Area Under the Receiver Operating Characteristics (AUROC)
[Bradley 1997] as the performance measurement for each method. The AUROC score
measures how well a model can distinguish between two classes, the score varies from 0
(poor result) to 1 (best result).

"https://github.com/houssamzenati/Adversarially-Learned-Anomaly-Detection
Zhttps://github.com/LeeDoYup/AnoGAN
3https://github.com/phuccuongngo99/Fenceg AN
“https://github.com/samet-akcay/ganomaly



5. Results

In the Table 2 the mean of the AUROC score for each experiment with the MNIST dataset
can be observed, and also a final mean across all classes. For each experiment and the
overall mean, the best values are highlighted.

In the MNIST results it is possible to visualize a big improvement from the clas-
sical KDE [Hodge and Austin 2004] method with the OCGAN [Perera et al. 2019] work,
the other methods yields competitive results, with one exception with the ALAD method.

Method 0 1 2 3 4 5 6 7 8 9 Mean

KDE 0,855 0,996 0,710 0,693 0,844 0,776 0,861 0,844 0,669 0,825 0,835
ALAD 0,743 0,296 0,684 0,525 0,456 0,432 0,579 0,380 0,553 0,363 0,491
AnoGAN 0,966 0992 0,850 0,887 0,894 0,883 0,947 0935 0,849 0,924 0,909
FenceGAN 0,780 0,959 0,784 0,810 0,665 0,714 0,686 0,844 0,605 0,602 0,747
GANomaly 0,892 0,675 0,946 0,793 0,810 0,847 0,821 0,689 0,838 0,650 0,816
OCGAN 0,998 0,999 0942 0,963 0,975 0,980 0,991 0,981 0,939 0,981 0,981

Table 2. Anomaly detection results for MNIST dataset

The CIFAR-10 experiment results can be observed in Table 3, which showed
to be a more challenging task resulting in similar final scores, with the ALAD
[Zenati et al. 2018] method presenting an increase of 3,3%, and none of the other method
had a lower score than the KDE [Hodge and Austin 2004] method.

Method plane  car bird cat deer dog frog horse ship truck Mean

KDE 0,658 0,520 0,657 0,497 0,727 0,496 0,758 0,564 0,680 0,540 0,611
ALAD 0,681 0453 0,646 0,641 0,665 0542 0,771 0,522 0,762 0418 0,644
AnoGAN 0,671 0,547 0,529 0,545 0,651 0,603 0,585 0,625 0,758 0,655 0,614
FenceGAN 0,629 0,596 0,500 0,500 0,606 0,584 0,686 0,647 0,626 0,641 0,616
GANomaly 0,613 0,627 0,505 0,579 0,581 0,623 0,679 0,612 0,622 0,617 0,615
OCGAN 0,757 0,531 0,640 0,620 0,723 0,620 0,723 0,575 0,820 0,554 0,630

Table 3. Anomaly detection results for CIFAR-10 dataset

The results show that GAN-based methods can be a good approach for anomaly
detection systems, the results showed that in both datasets GAN methods outperform the
classical KDE [Hodge and Austin 2004] method.

6. Conclusion

This work presents recent efforts towards bringing better anomaly detection systems
using Generative Adversarial Networks. The main challenge on this task is to trans-
form the test data to the latent space for calculating an anomaly score. The AnoGAN
[Schlegl et al. 2017] showed that this can be achieved through an optimization process in
test time with a high computational cost, and later methods relying on autoencoders such
as OCGAN [Perera et al. 2019] solved this problem at training time.

The latent space representation prove to be a good technique to represent contex-
tual information of an image. The best results where from the methods that used this



representation to calculate an anomaly score. Since the KDE [Hodge and Austin 2004]
method relies on estimating the data distribution based on the pixel values, it cannot model
contextual information, therefore harming the algorithm performance.

Due to the promising results shown for the anomaly detection task, future work
objective relies on testing GAN methods on datasets that have a higher resolution images.
Another proposal is to use the generated samples for data augmentation in adversarial
attack problem to increase the attackers power.
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