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Abstract. Energy fraud is a critical economical burden for electric power or-
ganizations in Brazil. In this paper we present the application of cutting-edge
Machine Learning algorithms, namely XGBoost and Isolation Forest, for pre-
diction of irregularities in electrical energy consumption. By using a Logistic
Regression model as a benchmark, we show that the use of XGBoost results in
a significant improvement in the F1-score for fraud predictions in two differ-
ent scenarios: with and without inspection history features. Moreover, we also
propose the use of the Isolation Forest algorithm for detection of anomalies in
electrical energy consumption. We show that this approach may be useful in the
case of lack of inspection history features, surpassing dummy classifiers.

1. Introduction

The last few decades have witnessed a drastic increase in global energy consumption,
driven by the accelerated growth of industry and technology. In special, world electricity
consumption almost duplicated in the last quarter-century with new demands such as
accessibility to home appliances and transportation [ENERDATA 2019]. In the future,
despite the development of more efficient devices and production processes, it is expected
a steady 1% annual growth in electricity demand [Antunes Lima 2019].

Competition for market share in electrical utility industry has raised the energy
loss during distribution as a major concern for generation companies in order to increase
efficiency ( [Management Solutions 2017]). The reasons for energy loss in distribu-
tion lines can be separated in two types: technical and non-technical [Antunes Lima
2019, Doukas et al. 2011, Management Solutions 2017]. The first case is inherent to
the physical properties of electricity transport through grid, when a fraction of energy is
converted and dissipated through heat or lost due to inductive and capacitive effects [An-
tunes Lima 2019, Doukas et al. 2011, Management Solutions 2017]. The second type
of energy loss comprises in fraudulent practices by consumers that deliberately modify



energy measuring devices in order to reduce household bills or perform new illegal elec-
tricity connections on main power cables in the neighborhood [Smith 2004, Ford et al.
2014, Cody et al. 2015a, Coma-Puig et al. 2016]. Despite being a crime in many coun-
tries, energy fraud is a widespread practice encouraged by the difficulty in verification,
which relies mainly on in situ inspections.

In Brazil, the high incidence of energy fraud is a critical economical burden for
electric power organizations. According to ANEEL (the Brazilian Electricity Regulatory
Agency), it was estimated a loss of 14% of total electrical energy available for distribution
on 2016, with fraud practice accounting for approximately half of this deficit and a total
burden of $1.2 billion at the same year [Antunes Lima 2019,Maia 2017]. This amounts to
3.6 times the last year’s budget for the National Council for Scientific and Technological
Development (CNPq').

Recently, advancements in machine learning algorithms and computing power
provided novel solutions to boost efficiency in detection of energy frauds. Based on pat-
terns and anomalies identification in consumption, predictive models can highlight poten-
tial candidates for in sifu inspection and reduce the cost of energy fraud detection [Ford
et al. 2014, Cody et al. 2015a]. Herein, we describe the application of state-of-the art
machine learning techniques for fraud detection in electrical energy consumption. These
studies resulted in robust predictive models for fraud occurrence based on gradient boost-
ing applied to registry profiles and energy consumption records. Moreover, we also pro-
pose a generalized and unsupervised model for fraud detection based on consumption
anomalies inferred by isolation forests.

2. Related Work

Several applications of supervised and unsupervised machine learning algorithms for pre-
diction of fraud and irregularity in electric utility can be found in literature. [Messinis and
Hatziargyriou 2018]. Examples of implementations of usual supervised methods include
the application of support vector machines to identify customer’s abnormal consumption
behavior based on previous energy usage data [Nagi et al. 2010, Alfarra et al. 2018].
Other case studies of well-established machine learning methods focused on fraud detec-
tion in electricity consumption are the use of decision trees [Monedero et al. 2012, Cody
et al. 2015b], logistic regression, linear discriminant analysis ( [Lawi et al. 2017]) and
time series [Nogales et al. 2002]. Additionally, recent studies have provided new insights
with the use of more complex machine learning models, such as Neural Networks [Nizar
et al. 2008, Monedero et al. 2006, Costa et al. 2013] and rough set theory [Spiri et al.
2014]. Within the scope of Unsupervised Learning, Cabral et al. in [E. Cabral et al. 2008]
present self-organizing maps that learns historical consumer energy consumption behav-
ior. This study is focused in high voltage electricity consumers. Furthermore, [Angelos
et al. 2011] proposes a two step methodology in order to find consumers with similar
consumption profiles and hence potential fraudsters. This methodology consists of: (i)
a C-means-based fuzzy clustering and (ii) a fuzzy classification system to rank users ac-
cording to their irregular patterns.

Thttp://www.portaltransparencia.gov.br/orgaos/205012ano=2018



3. Methodology

This section describes the methodology used in the present research. First, we discuss
the two datasets provided by CPFL Energia 2. The datasets basically consist of the same
features and also share the same target distribution, but diverge with relation to historical
information. The first dataset containing outdated information was used to fit the model.
Later, a second dataset containing more recent information was used in an out-of-time
validation. Secondly, we introduce the model used for this fraud classification task, the
XGBoost model. We also provide a list of hyperparameters in which we performed a grid
search.

3.1. Datasets

In order to develop predictive models for fraud in energy consumption, the following
primary datasets were considered: (i) reports of local inspections and (ii) history of en-
ergy consumption for each registry. The datasets were provided by CPFL Energia, a
utility company distributing electricity. They contain data of a medium-size brazilian
city with around 700 thousands customers between February of 2014 and September of
2018. Considering [Messinis and Hatziargyriou 2018] definitions, the dataset contains
low-resolution energy data, with a time resolution of one day, at consumer level. Af-
ter feature engineering and categories aggregation a total of 64 features was employed
in statistical modeling studies. For confidentiality reasons, the variables information are
condensed in classes as described in Table 1. The resulting features are very similar to the
ones described in [Messinis and Hatziargyriou 2018]. The fraud event variable describes
exclusively the fraudulent or non-fraudulent events observed by the company investiga-
tors. Any irregular behaviours with no proved malicious intent has been discarded.

Figure 1 shows the fraud distribution in the two datasets used in the present article.
The first one will be the basis to fit the classification model contains nearly 35 thousand
records, while the second one will be used to validate the model out-of-time and contains
nearly 7 thousand records. It is straightforward to see the conservation of fraud proportion
between both datasets. They both present an unbalanced dataset with around 72% of
regular events and 28% of irregular or fraud events.

3.2. XGboost classifier for fraud consumption

We approach the problem of fraud detection as a supervised binary classification problem
and set the fraud_event feature (described in Section 3.1) as our target. The remaining
features are used to fit a XGBoost model.

The XGBoost algorithm [Chen and Guestrin 2016] is a decision-tree-based en-
semble model that has been first introduced in 2014. It uses gradient boosting, an iterative
and additive approach where new models are trained to predict the residuals of prior mod-
els. Since we defined fraud detection as a binary classification problem, we use logistic
regression (LR) for binary classification as our learning objective.

We perform a grid search over 5 hyperparameters: (i) Number of Estimators, (ii)
Sub-sampling of Columns, (iii) Maximum Depth and regularization (iv) Gamma and (v)

2CPFL Energia, Rua Jorge de Figueiredo Correa, n 1632, Jardim Professora Tarclia CEP 13.087-397,
Campinas/SP, Brazil.



Table 1. Fraud dataset description.

Feature Description

Fraud_event Target variable labelling fraud (1) and non-
fraud events (0), as reported by local inspection

meter_ID Meter identifier related to the consumer

to Inspection date used as reference for feature
values

Inspection history Variables describing the history of inspections
results for a specific meter equipment.

Meter characteristics Set of variables describing different meter char-

acteristics (e.g.: age of equipment, model, man-
ufacturer brand).

Geographic location geographic variable calculated from the meter
location.

Consumption at inspection date | Total electrical energy consumption in kwh, as
measured at ¢

Consumption history Historical energy consumptions before
Consumption statistics Set of statistic variables calculated from con-
sumption history (e.g.: coefficient of variation).

Min Child Weight (Minimum sum of instance weight (hessian) needed in a child leaf). We
set our learning rate to 0.1. Remaining hyperparameters are set to default values. Table
2 shows the hyperparameters and the respective values on which we have performed the
grid search.

Table 2. Hyperparameter grid search for XGBoost

Hyperparameter Values

n estimators 10-560

col subsampling 0.3, 0.5
max_depth 1-12
gamma 1,4, 10, 20

min_child_weigth 1,4, 10

The grid search is performed using 5-Fold [Raschka 2018] cross-validation. For
evaluating the model performances, we use the Fl-score. It is a metric defined as the
harmonic mean between Precision and Recall, and is considered a parsimonious metric
when dealing with unbalanced problems, which is our case.

3.3. Unsupervised analysis

We apply an anomaly detection analysis, making use of the less amount of data per obser-
vation. In special, we made no use of “fraud” labels when training the model, making it
unsupervised. The anomaly detection model produces an “anomaly score” for each exam-
ple, analogous to how a binary classifier would produce a score for the “True” label. We
treated the unsupervised anomaly score as a fraud score, such that "common” examples
(with low anomaly score) were considered as legitimate, and odd” examples (with high
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Figure 1. Fraud distribution in original («) and out-of-time (b) datasets. Regular
and irregular situations are displayed in blue and orange, respectively. The
figures in bracket represent the true numbers of investigated customers for
each category.

anomaly score) were considered fraudulent. We fitted an Isolation Forest model ( [Liu
et al. 2008]), using all the data in which we had no label (no inspections were made),
and evaluated the predictions on the inspected population. We made no parameter tuning,
relying on the default parameters of the scikit-learn implementation [Liu et al. 2012].
After fitting, we ignored the default labels and have chosen the threshold that maximized
the F1-score, based on the precision-recall curve.

4. Results and Discussion

In this section we compare the results obtained with the XGBoost model and a LR model.
Both models were tested over two different datasets, one containing inspection history
data, and a second without such features. We also show how we conducted feature selec-
tion to refine the XBoost model. Furthermore, there is a section dedicated to the topic of
anomaly detection over energy consumption. In this, we show that anomaly scores may
be used as indicative of fraud.

4.1. Models Comparison for Fraud Detection

Inspection history variables demonstrated to be among the most important features for
fraud prediction. Hence, we created a new dataset by excluding inspection history data,
namely Newcomers. We chose to compare XGBoost with a LR model since it would be
a good benchmark for a binary classification task. Therefore, we test XGBoost and LR
performances over both datasets.

Three metrics were used to assess of these algorithms: F1-score, precision and re-
call. Fl-score is the more adapted when addressing unbalanced classification problems, as
it is the case here. In Table 3, results show that XGBoost outperforms LR in both settings,



in particular for the newcomers customers. And, for all metrics, the ”All customers” case
displays higher performance than the "Newcomers™’s one. It is expected since customer
historical data are taken into account.

Table 3. Fraud metrics for comparing performance of Logistic Regression (LR)
and XGBoost models.

All customers Newcomers
LR | XGBoost | LR | XGBoost
F1 0.67 0.8 0.13 0.61
Precision | 0.79 0.9 0.37 0.81

Recall | 0.58 0.71 0.08 0.48

4.2. Out-of-time model validation

The out-of-time validation process checks the model robustness on a later dataset than the
one on which the model has been fitted. It is useful when the application of a model to a
population is changing over time such as the energy consumption. Results considering all
customers as well as newcomers are displayed in table 4, both using XGBoost algorithm.
Considering ”All customers” column, we note a slight and consistent decrease in all the
metrics. This trend is also observed for the newcomers except for the recall where the
increase is not relevant regarding the standard deviation.

Table 4. Out-of-time validation.

All customers | Newcomers
F1 0.72 0.59
Precision 0.82 0.66
Recall 0.64 0.53

4.3. Model refinement

The XGBoost model automatically provides a list of the features ranked by their impor-
tance on the predictive model problem. Following this list as an importance rank, we
gradually increased the number of features in order to observe the smallest set of features
with higher importance that could provide a high predictive accuracy. We performed
this study considering both the full dataset and the group of consumers with no previous
inspection history (newcomers).

Figure 2 shows the change in Fl-score for both cases with the gradual addition
of features based in importance rank. As can be observed for the more general case
considering all type of consumers (2(a)), F1-score drastically increases when the first 4
features are considered. These first 4 features consist with information of the coefficient
of variation of energy consumption along last year, sum of previous fraud events for the
location, and features that describes meter equipment age and geographical location.

When removing features related to historical inspection (Figure 2(b)), we observe
a change in the pattern of F1-score increase, with a more gradual growth in performance
and two main substantial increases: (i) after including the 8th and (ii) the 30th feature
ranked by importance. In order to keep a predictive model with highest F1-score, we
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Figure 2. Refinement of predictive models in order to keep only the most relevant
features for predictive efficiency for (a) all costumers and (b) costumers
with no previous inspection history (newcomers).

considered for the case of newcomers the top 42 features to be considered in the final
model. Table 5 summarizes the results obtained for external cross-validation and external
hold-out datasets.

Table 5. Refinement of models.

F1 external CV | F1 hold-out
All consumers 0.80 0.76
Newcomers 0.78 0.60

Moreover, a pattern change in the final prediction models that is worthy to mention
is the role of the most important features for fraud distinction. While historical fraud
events are crucial features for the most general model considering all consumers, in the
absence of historical features (newcomers), the obtained models still present considerable
external predictive power with the geolocation and consumption coefficient of variation
being the most important contributors for fraud discrimination.

4.4. Anomaly detection may help when there is no labeled data

Extending our analysis to contexts when even less data is available, we removed the cor-
rect labels from our training set, making the problem unsupervised. Assuming that data
irregularities could be indicative of fraud, we use Isolation Forest ( [Liu et al. 2008]), an
anomaly detection that does not have label supervision, as described in 3.3. To test this,
we collected a subset of the data in which the proportion of frauds and was approximately
11%, comparing the results with the expected within our subset of data. Because we have
no prior information about the target (it is unavailable in this setting), the precision does
not raise above the true proportion, which is 11%. Hence, the best f1 score achievable in
this setting is when all samples are categorized as frauds (at least reaching 100% recall).

The results, shown in Table 6, indicate that anomaly scores can be used as a proxy



for fraud. Specially when the amount of unlabeled data is big, the anomaly results are a
considerable improvement over a random baseline.

Table 6. Frauds detected as anomalies.

Random | Random with same recall | Anomalies
F1 0.20 0.18 0.30
Precision 0.11 0.11 0.21
Recall 1.00 0.50 0.50

5. Conclusions and Future work

In this paper, we presented both a supervised and an unsupervised approaches to detect
fraud using data from CPFL Energia, a utility company distributing electricity.

Regarding the supervised study, models using XGBoost algorithms outperformed
the benchmark logistic regression models displaying a Fl-score of 0.8. We explained
this difference by the fact that XGBoost models perform better on unbalanced datasets,
as it is the case here. The resulting model has then been successfully validated on an
out-of-time dataset and newcomers, which are populations without any investigation his-
toric. A refinement study was also conducted, using the XGBoost feature importance list
as a reference. For the model considering the general case of all type of consumers, the
filtered predictive models presented very low decrease in F1-score metric even when con-
sidering only the four most important features. Among these features, there are data that
accounting consumption changes that suggests to be able to identify the changes in the
customers behavior, historical fraud observations and a geographic variable related to the
meter location.

On the other hand, for the unsupervised study, we ran an anomaly detection algo-
rithm using Isolation Forest and it has shown promising results.

The results presented in this article only concern one mid-size city, and should be
apply to other geographic regions. By doing so, we would potentially create a generic
version of the fraud detection model.

Acknowledgments

This work was supported by ANEELSs research & development program (Project ID PD-
0063-3039/2018) in partnership with CPFL. ENERGIA group companies.

References

Alfarra, H., Attia, A., and S. M. El Safty, C. (2018). Nontechnical loss detection for
metered customers in alexandria electricity distribution company using support vector
machine. Renewable Energy and Power Quality Journal, 1:468-474.

Angelos, E., Saavedra, O., Carmona Cortes, O., and Souza, A. (2011). Detection and
identification of abnormalities in customer consumptions in power distribution sys-
tems. Power Delivery, IEEE Transactions on, 26:2436-2442.

Antunes Lima, D. (2019). Perdas de energia - aneel (brazilian electricity regulatory
agency). https://www2.camara.leg.br/atividade-legislativa/



comissoes/comissoes-permanentes/cme/audiencias—-publicas/
2018/audiencia-publica-16-05-2018/ANEEL\%20-\%20\
%$20Perdas\%20Eletricas\%20-\%20Davi\%20Lima.pdf.

Chen, T. and Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. arXiv
e-prints, page arXiv:1603.02754.

Cody, C., Ford, V., and Siraj, A. (2015a). Decision tree learning for fraud detection
in consumer energy consumption. In 2015 IEEE [4th International Conference on
Machine Learning and Applications (ICMLA), pages 1175-1179. IEEE.

Cody, C., Ford, V., and Siraj, A. (2015b). Decision tree learning for fraud detection in
consumer energy consumption. 2015 IEEE 14th International Conference on Machine
Learning and Applications (ICMLA), pages 1175-1179.

Coma-Puig, B., Carmona, J., Gavalda, R., Alcoverro, S., and Martin, V. (2016). Fraud
detection in energy consumption: A supervised approach. In 2016 IEEE International
Conference on Data Science and Advanced Analytics (DSAA), pages 120-129. IEEE.

Costa, B., L. A Alberto, B., M. Portela, A., W, M., and O.Eler, E. (2013). Fraud detec-
tion in electric power distribution networks using an ann-based knowledge-discovery
process. International Journal of Artificial Intelligence & Applications, 4:17-23.

Doukas, H., Karakosta, C., Flamos, A., and Psarras, J. (2011). Electric power transmis-
sion: An overview of associated burdens. International Journal of Energy Research,
35(11):979-988.

E. Cabral, J., Pinto, J., M. Martins, E., and M. A. C. Pinto, A. (2008). Fraud detection in
high voltage electricity consumers using data mining. pages 1 — 5.

ENERDATA  (2019). Global  energy  statistical  yearbook  2019.
https://yearbook.enerdata.net/electricity/
electricity—-domestic-consumption—-data.html.

Ford, V., Siraj, A., and Eberle, W. (2014). Smart grid energy fraud detection using artifi-
cial neural networks. In 2014 IEEE Symposium on Computational Intelligence Appli-
cations in Smart Grid (CIASG), pages 1-6. IEEE.

Lawi, A., Wungo, S. L., and Manjang, S. (2017). Identifying irregularity electricity usage
of customer behaviors using logistic regression and linear discriminant analysis. 2017
3rd International Conference on Science in Information Technology (ICSITech), pages
552-557.

Liu, F, Ting, K., and Zhou, Z.-H. (2012). Isolation-based anomaly detection. ACM
Transactions on Knowledge Discovery from Data, 6(1):1 — 39.

Liu, F. T, Ting, K. M., and Zhou, Z.-H. (2008). Isolation forest. In 2008 Eighth IEEE
International Conference on Data Mining, pages 413—422. IEEE.

Maia, C. (2017). Perdas de energia custam mais de r$8 bi aos con-
sumidores em 2016. https://www.valor.com.br/empresas/
5219107/perdas—-de—energia-custam—mais—-de-r-8-bi-\
\aos—-consumidores—em-2016.

Management Solutions, M. (2017). Fraud management in the en-
ergy industry. https://www.managementsolutions.



com/sites/default/files/publicaciones/eng/
fraud-management—in-the—-energy—-industry.pdf. Accessed: 2019-
07-11.

Messinis, G. M. and Hatziargyriou, N. D. (2018). Review of non-technical loss detection
methods. Electric Power Systems Research, 158:250-266.

Monedero, 1., Biscarri, F., Leon, C., Guerrero, J. 1., Biscarri, J., and Millan, R. (2012).
Detection of frauds and other non-technical losses in a power utility using pearson
coefficient, bayesian networks and decision trees. International Journal of Electrical
Power & Energy Systems, 34:90-98.

Monedero, 1., Biscarri, F., Len, C., Biscarri, J., and Milln, R. (2006). Midas: Detection
of non-technical losses in electrical consumption using neural networks and statistical
techniques. pages 725-734.

Nagi, J., Yap, K. S., Tiong, S. K., Ahmed, S. K., and Mohamad, M. (2010). Nontechnical
loss detection for metered customers in power utility using support vector machines.
IEEE Transactions on Power Delivery, 25:11621171.

Nizar, A. H., Dong, Z. Y., and Wang, Y. (2008). Power utility nontechnical loss analysis
with extreme learning machine method. IEEE Transactions on Power Systems, 23:946—
955.

Nogales, F., Contreras, J., J. Conejo, A., and Espinola, R. (2002). Forecasting next-day
electricity prices by time series models. Power Engineering Review, IEEE, 22:58-58.

Raschka, S. (2018). Model Evaluation, Model Selection, and Algorithm Selection in
Machine Learning. arXiv e-prints, page arXiv:1811.12808.

Smith, T. B. (2004). Electricity theft: a comparative analysis. Energy policy,
32(18):2067-2076.

Spiri, J. V., Stankovi, S. S., Doi, M. B., and Popovi, T. D. (2014). Using the rough set
theory to detect fraud committed by electricity customers. [International Journal of
Electrical Power & Energy Systems, 62:727 — 734.



