
Hybrid Greedy Genetic Algorithm
for the Euclidean Steiner Tree Problem

Andrey V. R. Oliveira1, Bruna A. Osti1, Danilo S. Sanches1

1Department of Computing
Federal University of Technology - Paraná (UTFPR)

Avenida Alberto Carazzai, 1640 – Cornélio Procópio – PR – Brazil

andreyvro@hotmail.com, brunaosti@alunos.utfpr.edu.br,

danilosanches@utfpr.edu.br

Abstract. This paper presents a genetic algorithm for the Euclidean Steiner tree
problem. This is an optimization problem whose objective is to obtain a mini-
mum length tree to interconnect a set of fixed points, and for this purpose to be
achieved, new auxiliary points, called Steiner points, can be added. The pro-
posed heuristic uses a genetic algorithm to manipulate spanning trees, which
are then transformed into Steiner trees by inserting and repositioning the Steiner
points. Greedy genetic operators and evolutionary strategies are tested. Results
of numerical experiments for benchmark library problem (OR-Library) are pre-
sented and discussed.

1. Introduction
The Steiner minimal tree problem (SMTP) can be mathematically described as follows:

Find a geometric network T = (V,E) (a connected graph with a set of vertices
V and a set of edges E) so that N ⊆ V and S = V \N is a (possibly empty) set of
points known as Steiner points, so that

∑
e∈E l(e) (sum of the lengths of edges e ∈ E) ,

is minimized [Brazil et al. 2013].

The SMTP aims to find a network to interconnect a set of fixed points (terminals)
in a metric space, and can add new points (Steiner points) in order to minimize the to-
tal distance of the network [Hwang et al. 1992]. This problem has several variants; such
as Euclidean Steiner tree problem (ESTP) when the metric space is Euclidean; rectilin-
ear Steiner tree problem (RSTP) that uses the taxicab geometry [Hanan 1966]; Steiner
tree problem in graphs (or STPG), which aims to optimize already established networks
[Koch and Martin 1998]; and the bottleneck Steiner tree problem (BSTP), whose objec-
tive is to minimize the length of the largest edges of a Steiner tree [Wang and Du 2002].

Given v fixed points in a metric space, in order to obtain a solution for SMTP it
is necessary to determine: the number of Steiner points, the coordinates of the Steiner
points in the metric space; and the topology obtained from the points. It is assumed that
a solution for SMTP is a tree T (otherwise, it will not minimize the length), and that
any Steiner point in T has at least three incident edges. Edges at a given vertex have at
least 120◦ angle, which results in the fact that every Steiner point has three incident edges
forming angles of 120◦, which is known as angle property. A minimum Steiner tree with
fixed n points has a maximum of n− 2 Steiner points, and if it has the maximum number
of Steiner points, the tree is called a full Steiner tree (FST) [Gilbert and Pollak 1968].

In order to obtain a good approximate solution of feasible computational time for
ESTP in R2 (two-dimensional space), this work presents a heuristic based on genetic al-
gorithm (GA). GAs are stochastic methods that look for the best solution to a problem
among a large number of possible solutions. They were proposed and developed in the
1960s by John Holland, his students and his colleagues, at the University of Michigan.
These computational paradigms were inspired by the mechanics of natural evolution, in-
cluding survival of the fittest, crossover, and mutation [Goldberg 1989].

In this work, a steady-state GA is used to investigate the effect of generation over-
lap, the behavior of crossover operators and mutation for trees, and the impact of apply-
ing evolutionary strategies. The algorithm uses a population of spanning trees that are
transformed into Steiner trees because a spanning tree usually works with less memory
resources than a Steiner tree. Genetic operators are greedy because they tend to support
lower cost edges, which results in the creation of topology close to minimum spanning
trees (MSTs); therefore, these operators rely on the hypothesis that spanning trees close
to the minimum tend to be transformed into good Steiner trees. Also, we have used two
algorithms to generate the Steiner trees, resulting in a hybrid GA approach that allows
fast convergence and high quality solutions.

2. Related Work
In 1992, Smith [Smith 1992] developed the first exact algorithm to solve the ESTP in
R with dimension greater than 2. The algorithm uses a “branch-and-bound” method to
construct FSTs and stores them in a structure called “vector-topology”. For an SMT to
be obtained from a vector-topology, it is necessary that the Steiner points are in optimal
positions. In 2008, Fampa and Anstreicher [Fampa and Anstreicher 2008] proposed im-
provements in the Smith algorithm, creating a new algorithm that was named “Smith+”.

Some heuristics use MST as the basis for generating SMT. The Thompson algo-
rithm [Thompson 1973], generates the MST, searches for sets of three vertices connected
with an angle smaller than 120◦ at the intersection of the edges, and then inserts a Steiner
point into the Torricelli point of the triangle formed, disconnects the vertices, and re-
connects them to the Steiner point. The process of inserting Steiner points is repeated
iteratively until forming an FST, which then has its Steiner points repositioned in optimal
positions in order to obtain the SMT. Dreyer and Overton [Dreyer and Overton 1998] de-
veloped a heuristic based on Thompson’s heuristic, which repositions the Steiner points
after insertion of all Steiner points.

Barreiros [Barreiros 2003] uses a two-phase GA; in the first phase it decides how
to partition a set of vertices and in the second phase it finds the SMT of each partition.
The GA of Jesus et al.[Jesus et al. 2004] codes the solution through a vector representing
the position and the adjacent points to the Steiner points. Yang [Yang 2006] presents a
GA whose approach is based on moving the Steiner points, constructing a tree joining
nearby points, and at the end eliminating Steiner points that do not have degree three and
invalidate the angle property. Bereta [Bereta 2018] proposes a memetic algorithm, which
encodes the solution through a vector that stores the coordinates of the Steiner points, and
a bit that informs whether the gene (Steiner point) is active or not.

The state-of-art for ESTP in Rd, with d = 2, is the exact algorithm “Geosteiner”
[Winter and Zachariasen 1997], and for d > 2, it is the exact algorithm “Smith+”

[Fampa and Anstreicher 2008]. As for non-deterministic algorithms, Laarhoven and
Ohlmannn [Laarhoven and Ohlmannn 2010] present good results in viable computational
time, already Yang [Yang 2006] shows a better quality in the solutions, but with high
computational time when compared to the other heuristics.

3. A Genetic Algorithm for Euclidean Steiner Tree Problem
This study proposes a heuristic that uses a genetic algorithm (GA) in order to find good
solutions for the ESTP, in viable computational time. GAs are stochastic search proce-
dures inspired by the Darwinian principles of natural selection and the ideas of Mendelian
genetics. An GA begins with a population of randomly created candidate solutions and
implements probabilistic and parallel exploration in the search space using selection,
crossover, and mutation genetic operators [Goldberg 1989], [Mitchell 1998].

In a steady-state GA, only a few individuals are updated with each genera-
tion, unlike generational GA, in which the entire population is updated. Such an ap-
proach was popularized by the “G Enitor” system of Darrell Whitley and Joan Kauth’s
[Whitley 1988]. When compared to a generational GA, the steady-state GA uses less
memory and processing per generation because there is only one population, and only a
small portion of the population is selected to be processed by genetic operators. As indi-
viduals parents can remain in the population for a long time, fit individuals can dominate
the population rapidly, resulting in a premature convergence [Luke 2013].

3.1. Methodology
The proposed heuristic represents the solutions through spanning trees, transforms them
into full Steiner trees (FSTs) by the Thompson method [Thompson 1973], reposition the
Steiner points to their ideal positions through the algorithm of Smith [Smith 1992], and
in the end, removes unfeasible Steiner points from the best FST. Genetic operators act
under the topology of spanning trees, and since these represent only fixed points, there
is no need to worry about point constraints. When working with FSTs, the search for
the number of points during the execution of the algorithm is avoided; and when using
a deterministic algorithm to reposition the Steiner points, it is avoided the search for the
ideal position of the Steiner points, so in this approach the GA is in charge of searching
only the topology.

The process of inserting Steiner points into a spanning tree in order to connect sets
of three vertices and then removing the cycle-forming edges is called local steinerizations
[Hwang et al. 1992]. To add Steiner points to a tree through local steinerizations, a vertex
with a degree greater than one is chosen, such as v1 connected to two other vertices v2
and v3, inserts a Steiner point in the Torriceli point of the triangle formed by v1, v2, v3,
disconnects v1 from v2 and v3, and reconnects them to the Steiner point. To transform a
spanning tree into a Steiner tree, it is necessary to apply local steinerization over all fixed
vertices with degree greater one, until all vertices of the tree have degree one. If a vertex
v1 has a degree greater than two, one must start the steiner process by the pair of vertices
adjacent to v1 that results in the smallest angle in v1. This process allows, at the end of
the v1 steinerizations, the pair of vertices adjacent to v1 with greater angle in v1 will be
connected to this.

After all the fixed points of a spanning tree go through the process of local steiner-
ization, it is necessary to reposition the Steiner points so that its angle property is met,

and so the tree has a smaller overall length. For this purpose the iterative method of
Smith [Smith 1992] is used, in which at each step, the coordinates of the Steiner points
tend to the optimal position. The algorithm considers the edges as a set of ideal springs,
and at each iteration solves a system of linear equations, in order to minimize the poten-
tial energy of the springs system. Smith shows that for any initial position defined for
the Steiner points, this method converges to the only optimal coordinates of the Steiner
points. The studies by Fampa and Anstreicher [Fampa and Anstreicher 2008] and Forte et
al. [Forte et al. 2015] also use this method to reposition Steiner points. For more details
on this iterative procedure, see Smith [Smith 1992].

Once GA completes the iterations, an FST is returned as the best solution, and if
Steiner points are placed on other points, they can be removed as they do not contribute
to length minimization. To eliminate a Steiner point S that is positioned above another
point called V 1, simply connect the incident vertices in S1 to V 1, and then delete S1.

3.2. Operators

In order for the proposed GA to represent trees, the solutions are represented by direct
encoding by adjacency matrix, and the genetic operators and the other algorithms are
applied directly in this structure.

To calculate the fitness of an individual (solution) I1, its chromosome is copied
to a temporary individual Itemp, which has its topology transformed Steiner tree, its
length calculated and defined as the fitness of I1. The length of the tree is the sum
of the distances between the connected vertices, so as the problem is approached in
R2, each vertex has a value x and y which represents its position in the plane, then
the Euclidean distance between two points P = (px, py) e Q = (qx, qy) is given by
d(P,Q) =

√
(px − qx)2 + (py − qy)2 [Deza and Deza 2009]. Since V is the set of ver-

tices of a tree, and A is an adjacency matrix that determines the topology of the tree, such
that if Vi and Vj are adjacent, then Ai,j = 1, if not Ai,j = 0, the total Euclidean length of
the tree l(V) is given by l =

∑
i<j Ai,jd(Vi, Vj) [Gilbert and Pollak 1968].

The Prim algorithm [Prim 1957] creates a spanning tree in a greedy fashion, so
that from an initial node, the lower cost edge joining a new vertex to the growing tree is
added repeatedly. To create the initial population, our GA uses the algorithm PrimRST
[Raidl and Julstrom 2003], where the choice of new edges is performed in a random way.

In this work a tournament selection operator defines the individuals that will be
sent to the crossover and mutation operators. At the end of the process, the worst individ-
ual in the population is replaced by the generated child.

Crossover This paper proposes two crossover operators, inspired by the crossovers for
trees shown by Raidl and Julstrom [Raidl and Julstrom 2003], which unites two trees and
applies an algorithm such as Prim [Prim 1957] or Kruskal [Kruskal 1956] to select edges
at random, and thus create a new solution. In this study, both operators are greedy, that is,
tend to preserve lower cost edges, rather than randomly choosing them. They are applied
on the Gcr = (V, T1 ∪ T2) graph, where T1 and T2 is the set of edges of parent trees, that
is, after joining two candidate solutions, the crossover operator chooses which edges will
make up the child solution. This operation is shown in Figure 1.

Figure 1. Crossover operator to trees

In Figure 1 (a) two trees T1 and T2 are presented. The Figure 1(b) shows a tree
obtained by joining the set of edges T1 and T2. And in the Figure 1(c) the resulting tree is
shown after the application of one of the crossover algorithms in the tree of Figure 1(b).

The first crossover operator, based on the Prim’s algorithm [Prim 1957], constructs
a solution by adding new vertex to a forming tree, in a relatively greedy way. After
inserting a random vertex to start the solution, the other vertex are inserted iteratively, and
at each iteration only the first or second lower cost edge can be added. The operator is
shown in the Algorithm 1.

G(V,E) = G1 ∪G2 ; // parents

T ← ∅;
choose a random starting node s ∈ V ;
C ← {s} ; // set of connected nodes
A← {e ∈ E|e = (s, v), v ∈ V } ; // eligible edges
while C 6= V do

rndG = random number ∈ {1, 2};
choose the rndGth edge (u, v) ∈ A, u ∈ C at min cost;
A← A− {(u, v)};
if v /∈ C then // connect v to the partial tree

T ← T ∪ (u, v);
C ← C ∪ {v};
A← A ∪ {e ∈ E|e = (v, w) ∧ w /∈ C};

end
end
return T ;

Algorithm 1: Relatively greedy Prim crossover

The second operator, creates the individual child using a heuristic similar to the
Kruskal’s algorithm [Kruskal 1956]. Initially the child receives all the edges that are
common in both parents, then the other edges are added iteratively based on a tournament
between two random edges, one from each parent. The tournament selects the lowest
cost edge, and if its addition does not generate cycles, it is embedded in the tree. The
Algorithm 2 shows this operator.

Both operators are considered as exploitation, since only the edges that make up
the parents are used to create the child, and it is not possible to generate “new” edges.

G(V,E) = G1 ∪G2 ; // parents

T ← ∅;
for all edge e(u, v) ∈ E do

if e ∈ E1 and e ∈ E2 then // common edges
T ← T ∪ {(u, v)};
E ← A− {(u, v)};

end
end
while |T | < |E| − 1 do // remaining edges

choose an edge (u, v) ∈ (E ∩ E1);
choose an edge (x, z) ∈ (E ∩ E2);
if length(u, v) < length(x, z) then

(a, b)← {(u, v)};
else

(a, b)← {(x, z)};
end
E ← E − {(a, b)};
if (a, b) are not yet connected in T then

T ← T ∪ {(a, b)};
end

end
return T ;

Algorithm 2: Relatively greedy Kruskal crossover

Mutation The mutation operator aims to (re) introduce genetic information into the
population. To provide high locale, a mutation operator usually must make a small change
in a parent. For tree-based problems, the least possible change is the replacement of an
edge with another viable edge [Raidl and Julstrom 2003]. Two greedy mutation operators
are presented, the first one is able to generate changes of greater impact in the solution,
supporting the exploration, since the second one, as it only changes nearby edges, creates
a descendant that is a close neighbor.

The first operator chooses a random edge and removes it, which results in two
disconnected sub-trees, then two vertices are chosen, one in each part to form a new edge,
which reconnects the sub-trees. Among the candidate edges for reconnection, it is chosen
randomly between the first or the second edge of lower cost.

Figure 2. First mutation operator (Rem)

Figure 2(a) shows an example tree to which the first mutation operator will be
applied. In the tree of Figure 2(b), a random edge, shown by the dashed line, is removed.
Figure 2(c) shows the resulting tree after adding a new edge that reconnects the subtrees.

The second operator randomly chooses a vertex v1, and one of its adjacent vertices
v2, disconnects v1 from v2, and reconnects it to the vertex adjacent to v2 that is closer
to v1, called v3. This operator creates small modifications in the topology, generating
offspring close to the parent.

Figure 3. Second mutation operator (Adj)

Figure 3(a) shows the tree to which the second mutation operator will be applied.
In the tree of Figure 3(b), a vertex (v1) and one of its incident vertices (v2) are randomly
chosen. v1 is disconnected from v2 and reconnected to the vertex v3, which is adjacent
to v2. Figure 3(c) shows the resulting tree after mutation.

4. Computational Experiments

To evaluate GA’s ability to provide good quality solutions, the proposed algorithm was
implemented in the C++ language, and ESTPs are used from the OR-Library benchmark
library [Beasley 1990]. Each problem has 15 instances, and for comparisons, optimal
problem solutions are used with 10 to 100 points in R2. The quality of the solutions is
calculated by the reduction percentage of the solution over the minimum spanning tree
(MST), so that T is a solution obtained for a set of points X , the quality of the solution
is given by Q = ((l(MST) − l(T)) ∗ 100)/l(MST). As the algorithm is stochastic in
nature, to obtain the best solution and the mean solution, in each experiment each instance
is executed 30 times with a population of 50 individuals.

4.1. Operator Analysis

The first test investigate the performance of genetic operators of crossover and mutation
in a steady-state GA. The use of this type of GA, instead of the populational GA tends
to support computational time and memory consumption, since populational GA creates
a new population with each generation, to which the steady-state creates only a new indi-
vidual. For the experiments, the crossover operators were called “Prim” and “Kruskal”,
because they are based on these algorithms, the mutation operator that removes an edge
and divides the tree into sub-trees and then regroups it called a “Rem”, and the mutation
operator that creates edges based on adjacent vertices is called “Adj”.

The experiment was performed with all instances until an optimal result is reached
or there is no improvement in the solution for 100 generations. The results show that the
Prim crossover operator converges faster than Kruskal, which is due to the fact that Prim
is more greedy because in a solution under construction in choosing a new edge, Prim
compares the cost of several, while Kruskal compares only two. As Kruskal preserves
the common edges of the two parents, at first many bad edges can be maintained in the
solutions. As for the mutation operators, Rem converges faster than Adj, because it gen-
erates solutions that are more distant from the parents, supporting the exploration, and
consequently, the maintenance of the population diversity.

4.2. Generation Gap Algorithm

In a steady-state GA, only one individual is replaced in a fixed-size population with
each generation. By increasing the amount of substitutions per generation in a steady-
state GA, new individuals mingle with individuals from older generations, i.e, there
is a generation overlap, and then the algorithm is called a “generation gap algorithm”
[Jong and Sarma 1992]. The first study attempting to evaluate the effects of overlapping
generations is presented in [De Jong 1975]; in it a parameter G called a generation gap is
used to control the fraction of the population to be replaced with each generation.

Since g is the percentage of individuals replaced in a population of size n in a
generation, this experiment shows the effect of the overlap of generations on the genetic
operators, through the variation of g on a population with n = 50. In this experiment,
the crossover operators (Prim and Kruskal) conjugated with the best mutation operator of
the initial experiment (Rem) were tested. The g parameter was tested with 10, 25, 50, 75
and 90% and the individual child replaces the worst individual in the population. Figure 4
shows the average result of this experiment, applied under the 1st instance of the of 100
points problem for 30 generations.

Figure 4. Operators on generation gap algorithm. Instance: 100.1

In Figure 4, tests with g > 50 show a fast convergence with a high rate of overlap-
ping generations. The “Prim+Rem90” and “Kruskal+Rem90” tests have the best results
to run in a few generations, but they also have a longer average run time.

In order to diversify search space exploration methods, one approach in which
the two mutation operators (“Adj+Rem”) are applied together was tested with g = 90%.
The maximum number of generations is defined as 5 times the number of points of the
problem, establishing a proportionality with the size of the problem. Algorithms are
applied under all instances until an optimal result is reached or stagnant for 50 generations.
The average results are shown in Figure 5.

Also in Figure 5, we can see that the approaches using the two mutation operators
together have achieved better results. In addition, the Prim crossover operator found
better results on most problems when compared to Kruskal. it is important to note the
worst individual in the population is removed at each application of genetic operators, as
a consequently, population diversity also decreases very fast, and lead the algorithm stuck
in local optima.

Figure 5. Operators on generation gap algorithm

4.3. Populational Reset

To increase population diversity, an experiment was conducted to investigate the effect of
population redefinition in case of stagnation. In this experiment, the best approach of the
previous experiment (“Prim+Adj+Rem+90”) is compared to the same approach with the
addition of two types of population reset. Execution ends if fitness does not improve for
25 followed generations, and population redefinition whenever the population standard
deviation is less than 0.03. The first test shows a reset that holds the best individual and
replaces the rest with new solutions and is called “Prim+Adj+Rem+RstElitist”, and the
second replaces the best individual in the population with a new one, and is called of
“Prim+Adj+Rem+RstBest”. The results of this experiment are shown in Figure 6.

Figure 6. Operators on generation gap algorithm with reset

In Figure 6, the “Prim+Adj+Rem+RstBest” approach yields a better result than
“Prim+Adj+Rem+RstElitist”, showing an improvement of 0.01% in the mean reduction
percentage, and 30% in the average execution time, when compared to the non-reset ap-
proach. As selection is by tournament, withdrawal of the best individual allows other
individuals with potential to develop. The removal of many individuals is not beneficial
as much genetic material is lost, which makes the approach “Prim+Adj+Rem+RstElitist”
approach inferior to the approach that does not use reset.

4.4. Performance Analysis

The last experiment uses the “Prim+Adj+Rem+RstBest” configuration, in which 90% of
the population is replaced with each generation. If n is the number of points, the execution
is terminated when it reaches the optimum, run for n∗10 generations, or if the fitness does
not improve for 50 consecutive generations. If the population reaches a standard deviation
lower than 0.03, a population reset is applied that replaces the best individual.

The results are compared to the stochastic algorithms of Beasley
and Goffinet [Beasley and Goffnet 1994] and Laarhoven and Ohlmannn
[Laarhoven and Ohlmannn 2010], because through the first it is possible to observe
the evolution in the quality of the approaches over time, and the second presents the
latest comparable stochastic approach. Both heuristics use the Delaunay triangulation to
generate candidate Steiner points. Table 1 present the comparison of the results.

n
Beasley and

Goffinet (1994)
Laarhoven and

Ohlmann (2010)
Hybrid

Genetic Algorithm Opt.

σ±Std. σn
best σ±Std. σn

best σ±Std.

10 3.22±1.875 3.25 3.22±0.151 3.25 3.25±0.000 3.25
20 3.12±0.972 3.15 3.13±0.058 3.16 3.16±0.000 3.16
30 2.95±0.754 3.07 3.03±0.068 3.07 3.07±0.004 3.07
40 2.97±0.633 3.14 3.11±0.051 3.14 3.14±0.000 3.14
50 2.92±0.423 3.03 3.00±0.049 3.03 3.03±0.014 3.03
60 3.18±0.371 3.27 3.23±0.058 3.27 3.26±0.031 3.27
70 2.95±0.374 3.11 3.08±0.050 3.11 3.09±0.055 3.11
80 2.92±0.686 3.03 2.98±0.048 3.03 3.02±0.025 3.04
90 2.95±0.502 3.11 3.04±0.062 3.12 3.12±0.014 3.12

100 3.07±0.337 3.26 3.19±0.061 3.27 3.23±0.065 3.27

Table 1. Performance Analisys

In Table 1, “n”represents the number of fixed points of the problem, “σn
best” the

average of the best percent reduction per point, “σ±Std.” the percentage of average reduc-
tion per point and its standard deviation, and “Opt.” the average reduction of the optimal
per point available in the Or -Library.

Analyzing the results it is possible to see that the Genetic Algorithm presents
better results than the heuristics that use the Delaunay triangulation. With respect to GA,
the average percentage of reduction (σ) presents optimal or very close results for the tests
performed with 10, 20, 30, 40, 50 and 90 points; and for the others, the reduction is from
0.01% to 0.04% below the optimum. The best percent reduction (σn

best) is not optimal for
80 points, where GA does not find the best solution in any of the 30 runs of 2nd, 3rd, and
4th instance, however, the result is 0.01% less than optimal.

To compare the means of the two best algorithms, a paired t-test was used, since
the values are in a normal distribution. The test resulted in pvalue ≈ 0, showing that there
is a significant statistical difference between the algorithms.

5. Conclusions

ESTP is a difficult problem to be solved, and since exact methods can be computation-
ally demanding, this study presents a heuristic for ESTP in R2 whose base is a genetic
algorithm. The heuristic has greedy genetic operators proper to the tree data structure,
coupled with a method that allows the transformation of spanning trees into Steiner trees.

The initial experiments investigate the overlap of generations through a gerational
gap algorithm in which a new individual replaces the worst individual in the population.
Larger overlays were more efficient, although they consumed more computational time.
The use of two mutation operators was also efficient because it allows different ways of
exploring the search space. Tests with 90% substitution per generation showed that the
operator of crossover Prim with the operators of mutation Ajd and Rem obtained the best
result.

With the gerational gap, the heuristic showed an improvement, however, fit indi-
viduals can dominate the population quickly, which led to population reset investigation.
No reset resulted in an increase in expressive quality, however, the technique of removing
the best individual in case of stagnation resulted in a 30% improvement in runtime.

In the end, an GA prepared on the basis of the experiments was compared with
other relevant heuristics in the literature. The GA showed good performance, generating
results close to that of optimal solutions in viable computational time.

Acknowledgments

The authors would like to thank Federal University of Technology - Parana and National
Council for Scientific and Technological Development (CNPq), for supporting this study.

References

Barreiros, J. (2003). An hierarchic genetic algorithm for computing (near) optimal Eu-
clidean Steiner trees. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2003). Springer-Verlag.

Beasley, J. E. (1990). OR-Library: distributing test problems by electronic mail. Journal
of the Operational Research Society.

Beasley, J. E. and Goffnet, F. (1994). A Delaunay triangulation-based heuristic for the
Euclidean Steiner problem. Networks.

Bereta, M. (2018). Baldwin effect and lamarckian evolution in a memetic algorithm for
Euclidean Steiner tree problem. Memetic Computing.

Brazil, M., Graham, R. L., Thomas, D. A., and Zachariasen, M. (2013). On the Story of
Euclidian Steiner Tree Problem. Archive for History of Exact Sciences.

De Jong, K. A. (1975). An Analysis of the Behavior of a Class of Genetic Adaptive
Systems. PhD thesis, University of Michigan. AAI7609381.

Deza, M. M. and Deza, E. (2009). Encyclopedia of Distances. Springer Berlin Heidelberg.

Dreyer, D. and Overton, M. (1998). Two heuristics for the Euclidean Steiner tree problem.
Journal of Global Optimization.

Fampa, M. and Anstreicher, K. M. (2008). An improved algorithm for computing Steiner
minimal trees in Euclidean d-space. Discrete Optimization.

Forte, V. L. d., Montenegro, F. M. T., Brito, J. A. d. M., and Maculan, N. (2015). Iter-
ated local search algorithms for the Euclidean Steiner tree problem in n dimensions.
International Transactions in Operational Research.

Gilbert, E. N. and Pollak, H. O. (1968). Steiner minimal trees. SIAM Journal on Applied
Mathematics.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning.
Addison Wesley.

Hanan, M. (1966). On Steiner’s problem with rectilinear distance. SIAM Journal on
Applied Mathematics.

Hwang, F. K., Richards, D. S., and Winter, P. (1992). The Steiner Tree Problem. Elsevier
Science Publishers B. V.

Jesus, M., Jesus, S., and Márquez, A. (2004). Steiner trees optimization using genetic
algorithms. In Technical report. Centro de Simulação e Cálculo.

Jong, K. A. D. and Sarma, J. (1992). Generation gaps revisited. In FOGA.

Koch, T. and Martin, A. (1998). Solving Steiner tree problems in graphs to optimality.
Networks.

Kruskal, Jr., J. B. (1956). On the shortest spanning tree of a graph and the traveling
salesman problem. Proc. Amer. Math. Soc.

Laarhoven, J. W. and Ohlmannn, J. W. (2010). A randomized Delaunay triangulation
heuristic for the Euclidean Steiner tree problem in Rd. Journal of Heuristics.

Luke, S. (2013). Essentials of Metaheuristics. Lulu.

Mitchell, M. (1998). An Introduction to Genetic Algorithms. MIT Press.

Prim, R. (1957). Shortest connection networks and some generalizations. Bell System
Tech. J.

Raidl, G. R. and Julstrom, B. A. (2003). Edge sets: an effective evolutionary coding of
spanning trees. IEEE Transactions on Evolutionary Computation.

Smith, W. D. (1992). How to find Steiner minimal trees in Euclidean d-space. Algorith-
mica.

Thompson, E. A. (1973). The method of minimum evolution. Annals of human genetics.

Wang, L. and Du, D.-Z. (2002). Approximations for a bottleneck Steiner tree problem.
Algorithmica.

Whitley, D. (1988). Genitor : a different genetic algorithm. Proceedings of the Rocky
Mountain conference on artificial intelligence, 1988.

Winter, P. and Zachariasen, M. (1997). Euclidean Steiner minimum trees: An improved
exact algorithm. Networks.

Yang, B. (2006). A hybrid evolutionary algorithm for the Euclidean Steiner tree problem
using local searches. In Knowledge-Based Intelligent Information and Engineering
Systems.

