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Abstract. Classifying diseases on tomato leaves, in particular, is a challenge for
growers because it is difficult to visually identify the subtle differences between
the symptoms of different diseases. Seeking to solve this problem, this study
presents a comparative analysis of the performance of neural networks Incep-
tion and DenseNet in the classification process of diseases in tomato leaves us-
ing Transfer Learning and Data Augmentation techniques. Through experimen-
tal analysis, the DenseNet network has the best classification behavior, manag-
ing to classify diseases with 98.25% accuracy, 95.33% accuracy, 94.09% recall
and AUC of 98.72%.

Resumo. A classificação de doenças em folhas de tomate, em particular, é
um desafio para os agricultores porque é difı́cil identificar visualmente as
diferenças sutis entre os sintomas de diferentes doenças. Buscando resolver
este problema, este estudo apresenta uma análise comparativa do desempenho
das redes neurais Inception e DenseNet no processo de classificação de doenças
em folhas de tomate utilizando técnicas de Transfer Learning e Data Augmen-
tation. Através da análise experimental, a rede DenseNet possui o melhor com-
portamento de classificação, conseguindo classificar doenças com 98,25% de
precisão, 95,33% de precisão, 94,09% de recordação e AUC de 98,72%.

1. Introduction
Tomato cultivation is of great economic importance worldwide, but plant diseases can lead
to significant losses in production and quality. Early detection of diseases in plants can be
a key factor in minimizing these losses, and machine learning techniques have been used
for this purpose. In this study, a comparative analysis of the performance of Inception
[Szegedy et al. 2016] and DenseNet [Huang et al. 2017] neural networks in the process
of classifying diseases in tomato leaves using Transfer Learning and Data Augmentation
techniques is presented.

The classification of diseases in plants is an important task for agriculture, as it
can help prevent and control disease outbreaks, minimizing crop loss and increasing pro-
ductivity. The classification of diseases in tomato leaves, in particular, is a challenge for
farmers, as it is difficult to visually identify the subtle differences between symptoms of
different diseases. The use of machine learning techniques, such as convolutional neu-
ral networks, can be a solution to this problem. Previous studies have shown that these



techniques have been effective in classifying diseases in plants with high accuracy and ef-
ficiency [Fuentes and Yoon 2018, Mohanty et al. 2016, Sladojevic et al. 2016]. Further-
more, the use of Transfer Learning and Data Augmentation techniques has shown signifi-
cant improvements in the generalization capability and accuracy of classification models
[Pan and Yang 2010, Shorten and Khoshgoftaar 2019].

Images of tomato leaves infected with nine common diseases were used: Bacte-
rial spot, Early blight, Late blight, Leaf Mold, Septoria leaf spot, Target Spot, Tomato
mosaic virus, Tomato yellow leaf curl virus, Two-spotted spider mite, and a class of
healthy leaves. These images were obtained from the online repository provided in
[Huang and Chang 2020]. The images were divided into training and testing sets, and
the Inception and DenseNet networks were trained and tested with these sets using differ-
ent parameter configurations and regularization techniques.

The results were evaluated based on various performance metrics, including accu-
racy, AUC, precision, recall, and loss. These metrics provide important information about
the quality of classification and the ability of neural networks to distinguish between dif-
ferent diseases and healthy leaves.

1.1. Document Organization
This article is organized into 6 Sections. In Section 2, the concepts and theoretical founda-
tions necessary to understand the proposed work will be presented. In Section 3, academic
works related to similar subjects as this present work will be reviewed. In Section 4, the
methodology adopted for the development of the work will be presented. In Section 5,
the results obtained with the proposed methodology will be presented, and an analysis
of these results will be performed. In Section 6, the main conclusions reached from the
analysis of the results will be discussed.

2. Theoretical Foundation
The theoretical foundation is a crucial aspect of any research study, as it provides the
necessary understanding of the concepts and principles that underpin the proposed work.

2.1. Inception
Inception is a CNN that was first introduced by Google researchers in 2014
[Szegedy et al. 2015]. The Inception network is well known for its ability to efficiently
train deeper and wider neural networks, which are crucial to achieving peak performance
in various [Yosinski et al. 2014] computer vision tasks. Figure 1 shows the architecture
of the Inception.

Figure 1. Convolutional Neural Network Architecture Inception

One of the main advantages of the Inception network is its ability to perform image
classification tasks well while using less computational resources than other deep CNN
[Xie et al. 2017] architectures. This is achieved through the use of various specialized
modules, such as the initiation module, which allows the network to learn complex and
diverse features with minimal computational cost.



2.2. DenseNet

DenseNet is a CNN architecture proposed by [Huang et al. 2017], which has achieved
impressive results in various computer vision tasks, such as image classification and se-
mantic segmentation. The main idea behind the DenseNet architecture is to connect all
layers in a dense network, where each layer receives as input the outputs of all previous
layers Figure 2 shows the architecture of the DenseNet.

Figure 2. Convolutional Neural Network Architecture DenseNet

One of the main advantages of DenseNet is its ability to deal with the prob-
lem of gradient fading in deep networks, which is one of the main challenges in train-
ing deep networks. In fact, dense connection between layers in a DenseNet network
helps propagate the gradient throughout the network, leading to better stability during
training.[Wang et al. 2018, Bhattacharjee et al. 2019]

3. Related Works
The literature review in this section aims to demonstrate how commonly used machine
learning approaches efficiently handle this objectives.

Hong et al. [Hong et al. 2020] aimed to use transfer learning to make the process
of building deep learning networks for detecting and diagnosing diseases in tomato leaves
faster and more cost-effective. They used five different CNNs to extract features from nine
types of tomato leaf diseases. Among the models tested, Densenet Xception achieved the
highest recognition accuracy at 97.10%, but it had more parameters. On the other hand,
ShuffleNet achieved an accuracy of 83.68% with fewer parameters.

Zaki et al. [Zaki et al. 2020] work’s aimed to identify diseases in tomato plants
through leaf images. A compact MobileNet V2 was used to identify three types of dis-
eases in tomato plants. The algorithm was tested on 4,671 images from the PlantVillage
dataset and achieved a disease detection accuracy of over 95.94%.

A model based on a convolutional neural network was proposed in the work of
Agarwal et al. [Agarwal et al. 2020]. The model is compared with other pre-trained
models and the experimental results show that the proposed model is effective in detecting
and classifying nine tomato diseases, with an average accuracy of 91.2%.

Based on what has been exposed, it can be stated that regardless of the nature of
the research carried out, the researchers resorted to digital tools and aimed to ensure that
the chosen data were later analyzed carefully and systematically. This makes the results
obtained more reliable. In addition, it is worth mentioning that the related works were
analyzed with the greatest affinity in relation to the problem addressed.

4. Experimental Evaluation
This experiment aimed to train and test two CNN architectures, performing the analysis
of their evaluation metrics in the task of classifying images of leaf diseases, evaluating
the network’s ability to identify and classify the diseases that can affect tomato leaves.



4.1. Development Environment
In this research, the adopted development environment was the Python language in ver-
sion 3.11.3. For the implementation of the convolutional neural networks used and
their callbacks, the Keras library was used [Chollet 2015]. In addition, Visualkeras
[Gavrikov 2020] was used for the visualization of the implemented network architectures
and the Matplotlib library [Hunter 2007] for graph plotting.

For this work, the configuration of the machine used in the experiments has the
following technical specifications:

• AMD Ryzen 5 5600X, 4.6GHz with 6 physical cores and 12 threads;
• 32 GB RAM memory;
• 1.5 TB storage;
• NVIDIA GeForce RTX 2060 Super video card, with 8 GB of dedicated memory.

4.2. Database
The database used is composed of images of tomato leaves with different types of dis-
eases. The tomato leaf images from the first dataset are selected from the PlantVillage
database with ten categories, nine of which are intended for different foliar diseases.

Each image consists of a single leaf and a single background, the database contains
a total of 14,531 images. The dataset was made available in JPEG format.

4.3. Preparation of Data and Classifiers
To mitigate overfitting in the limited database, data pre-processing techniques were em-
ployed. The proposed approach utilized Data Augmentation methods to expand the
dataset size. Techniques such as rotation, inversion, and noise applied to each image.
However, these transformations were exclusively implemented on the training set as rec-
ommended in Shorten and Khoshgoftaar [Shorten and Khoshgoftaar 2019]. Applying
data augmentation to the entire dataset can lead to computational challenges and longer
training times. To facilitate this process, the Albumentations [Buslaev et al. 2020] library
was utilized.

The architectures were trained using 100 epochs, each epoch being defined as
applying all images in the training set to the model. When an epoch is finished, the
current state of the model is validated using the validation dataset.

The Early Stopping 1 callback was used. This is a common callback regularization
technique used to avoid overfitting neural network models during training. The goal is to
stop model training when performance on a validation set no longer improves.

In Keras, early stopping can be implemented using the EarlyStopping callback.
This callback monitors a specified metric and halts the training process if there is no
improvement in that metric for a specified number of epochs. In this study, the AUC
metric was monitored, and a patience criterion of 5 epochs was set.

Finally, the Root Means Square Propagation optimizer was used, another hyper-
parameter used with the optimizer was the Loss function, CategoricalCrossentropy 2. For

1https://keras.io/api/callbacks/early_stopping/
2https://www.tensorflow.org/api_docs/python/tf/keras/losses/

CategoricalCrossentropy



training, the value of the initial learning rate used was 1 × 10−3, this rate was modified
each time to a lower one.

5. Results and Discussions

DenseNet and Inception convolutional neural network models were trained and tested
on a public database to classify diseases in tomato leaves. The models’ performance
was evaluated using different metrics, such as accuracy, AUC, precision, recall, and loss.
The analysis showed that the DenseNet network outperformed the Inception network. In
the test set, DenseNet achieved an accuracy of 98.25% and an AUC of 98.72%, while
Inception had an accuracy of 93.02% and an AUC of 95.13%.

In Figure 3 can be seen the behavior of the DenseNet model metrics during the
model training and validation process. It is verified that the model had its training inter-
rupted with 30 epochs, due to the EarlyStopping callback.

Figure 3. Results Obtained by the DenseNet Architecture

During the training process of the DenseNet model, using the validation set, after
23 epochs, the Loss function reached its minimum value (0.0164), and the corresponding
accuracy was 99.86%, precision 99.59%, 99.56% recall and 100% AUC.

In Figure 4 we can see the behavior of the Inception model metrics during the
model training and validation process. It is verified that the model had its training in-
terrupted with 15 epochs, half of what was needed for the DenseNet model, due to the
EarlyStopping callback.

Figure 4. Results Obtained by the DenseNet Architecture

During the training process of the Inception model, using the validation set, after
12 epochs, the Loss function reached its minimum value (0.0568), and the corresponding
accuracy was 99.74%, precision 99.64%, 98.80% recall and 99.98% AUC.



Although the Inception network was trained for only half the number of epochs
compared to DenseNet, it still failed to outperform the metrics achieved by DenseNet.
The Inception model showed lower results across all the evaluated metrics.

The Table 1 shows the behavior of the results obtained by the DenseNet architec-
ture in the test set.

Table 1. DenseNet Architecture Results in the Test Set.
Metric Value

Accuracy 98.25%
Precision 95.33%

Recall 94.09%
AUC 98.72%

The Table 2 shows the behavior of the results obtained by the Inception architec-
ture in the test set.

Table 2. Inception Architecture Results in the Test Set.
Metric Value

Accuracy 93.02%
Precision 82.20%

Recall 74.20%
AUC 95.13%

The results obtained by the DenseNet and Inception networks in the present work
were evaluated in different performance metrics. DenseNet presented an accuracy of
98.25%, precision of 95.33%, recall of 94.09% and AUC of 98.72%. Inception, although
it was interrupted with half the number of epochs required for the other network, obtained
an accuracy of 93.02%, precision of 82.20%, recall of 74.21% and AUC of 95.13%.

Accuracy means that the model was right 98.25% of the time in classifying leaf
diseases. It is an important metric, but it is important to remember that it can be mislead-
ing in some cases, when a class is much more frequent than the others, which can lead
to a result with high accuracy, but with poor performance in the classification of classes
minorities.

The precision achieved by the network means that when the model classifies a leaf
as belonging to a given disease, it is correct approximately 95.33% of the time. Precision
is important when you want to avoid false positives, that is, when the model classifies a
leaf as sick, but it is healthy. This is especially important when the consequence of a false
positive is serious, such as unnecessary intervention in the plantation.

The network recall means that the model is able to correctly identify 94.09% of
leaves that actually belong to a given disease. Recall is important when you want to avoid
false negatives, that is, when the model classifies a leaf as healthy when, in fact, it is sick.
This is especially important when the consequence of a false negative is severe, such as
letting a disease spread through the crop.

Finally, the AUC metric, with 98.72%, means that the model managed to achieve
an excellent ability to distinguish between different leaf diseases and healthy leaves. The



AUC is an important metric because it considers the recall and specificity of the model,
that is, its ability to correctly identify both positive and negative samples.

Through the analysis of the chosen metrics, it can be verified that the DenseNet
network obtained a superior performance in the task of classifying diseases in tomato
leaves, with an accuracy of 98.25 % and AUC of 98.72%, while the Inception network
obtained an accuracy of 93.02% and AUC of 95.13%. The choice of the DenseNet net-
work is due to the fact that this network showed better results in all evaluated metrics,
including accuracy, precision, recall and AUC, indicating that this network is more effi-
cient in classifying diseases in tomato leaves.

6. Conclusion and Future Work
In this study, two architectures of convolutional neural networks, DenseNet and Incep-
tion, were analyzed for the task of classifying foliar diseases that attack tomato. The
dataset used was composed of a limited number of images, but it was optimized through
pre-processing techniques, such as data augmentation, which significantly increased the
number of images in the training set.

The results showed that the DenseNet architecture achieved an accuracy of
98.25%, while the Inception architecture achieved an accuracy of 93.02%. Although both
models achieved satisfactory results, the DenseNet architecture stood out for its better
generalization ability and superior performance in the task of classifying foliar diseases in
tomato. The choice of the DenseNet network is due to the fact that this network has shown
better results in all evaluated metrics, including accuracy, precision, recall and AUC, in-
dicating that this network is more efficient in classifying diseases in tomato leaves.

One improvement identified in this work is using a single dataset for training and
testing the classifier. To achieve a more generalizable model, we suggest incorporating
additional databases during training. Furthermore, future research could explore alterna-
tive image pre-processing and data augmentation techniques to enhance the performance
of convolutional neural networks in classifying plant leaf diseases. Developing more ro-
bust models is crucial in effectively monitoring and controlling diseases in agricultural
crops, mitigating production losses, and ensuring food security.
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