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Abstract. This work intends to adopt fitness curves prediction from Genetic Al-
gorithms (GAs) proposed in [Almeida et al. 2021], in the context of a more com-
plex function, which is the Schwefel benchmark function. The prediction is per-
formed with the knowledge only of the GA initialization parameters, using the
Random Forest model. This approach addresses the main gap in the original
work achieving good results, which makes this approach more promising.

1. Introduction
The Genetic Algorithms (GAs), presented in [Holland et al. 1992], are stochastic search
and optimization methods based on biological evolution and inspired by Darwin’s theory
of ”survival of the fittest” [Goldberg 1989], in which there is a set of individuals/solutions
that go through a series of operations. In GAs, the individual’s fitness indicates how good
a solution for a given problem is.

For the execution of a GA it is necessary to define some basic parameters, more
specifically: population size, crossover probability, mutation probability, elitism, and
stopping criteria, which is commonly defined by a fixed number of generations. And,
the performance of the algorithm has strong links to the definition of these elements
[Mitchell 1998].

A simplified way to inspect the evolutionary process of a GA is to record the
maximum, average, and minimum fitness values of individuals in each generation. With
that, it is possible to plot a fitness by generation chart [Almeida et al. 2021].

Based on this, this work aims to reuse the experiences obtained in GA executions
and to train a machine learning model to predict the maximum, average, and minimum
fitness curves that emerge during the evolutionary process of a GA, and this, only with
the knowledge of its initialization parameters.

There is a great number of works that implement some kind of fitness prediction,
but they are usually focused in the context of parameter tuning or approximation and meta-
models as alternatives for the original fitness functions calculations [Bhattacharya 2013].

This paper is an extended version of a previous work [Almeida et al. 2021], that
was presented as a poster with some promising initial experiments and results but initially
applied in a one-dimensional function. Now, we propose to expand the results evaluating
a harder and more realistic problem, which is the Schwefel function, a N-dimensional
common benchmark function.



2. Methodology

2.1. Definition of Features and Targets

The features follows the same of the original work, which are the current generation
(CurrentGen), population size (PopSize), stop generation (StopGen), crossover prob-
ability (CxPb), mutation probability (MxPb), elitism (Elitism), lower (LowerBound)
and upper bound of the adopted problem (UpperBound). The targets were not changed
as well, which are the maximum (MaxFitness), average (AvgFitness), and minimum
(MinFitness) fitness values of a certain generation.

The defined problem is the minimization of the Schwefel Function, a common
benchmark problem. This function is one of those hard multimodal function that are
difficult to solve, as it contains several local minima locations, however global minima
0 is located at f(x∗) = [1, 1, ..., 1] in the domain of [−500, 500] [Hussain et al. 2017].
Mathematically, this function is expressed as f(x) =

∑D
i=1−xi sin

√
|xi|, where D =

Dimension. A common value adopted for dimension is 30 [Hussain et al. 2017].

2.2. Dataset

The details about the algorithm implemented to generate the dataset are given as follows,
floating-point was used for chromosome representation, tournament method for selection
under the configurations of three participants and one round, two-point method was used
for crossover operation, swap method was chosen for mutation, and the replacement of
new individuals in the population is random.

Altogether, 1.000 executions were defined, and in each, the initialization pa-
rameters were uniformly randomized under predetermined range restrictions, these
definitions are given by Parameters Range = {PopSize : [50, 200], StopGen :
[50, 500], CxPb : [0.7, 1.0],MxPb : [0.0, 0.05], Elitism : [0, 10], LowerBound :
[−500,−1.0], UpperBound : [1.0, 500]}. In each run, G records are added to the data
set, where G = StopGen. After all executions, approximately 270.000 records were
obtained.

The range restrictions were defined based on the parameters commonly adopted
by researchers in experiments and tuning processes, where mutation probabilities are low
and crossover probabilities are high [Eiben and Smit 2012]. The values for population
size and stop generation were defined based on the behavior of the problem, in which
the algorithm converged quickly without the need for a high variety of the initial popu-
lation and a large number of generations. Finally, values for upper and lower domains
of the problem were defined according to it’s common values [Hussain et al. 2017]. A
comparison between the difference between the values adopted and the values adopted in
[Almeida et al. 2021] can be seen in figure 1.

Figure 1. Comparison of adopted values.



2.3. Predictive Model
As in the original work, a Random Forest model was used for the prediction process
with 85% of data for training and 15% for testing. Random Forests are a combination
of tree predictors such that each tree depends on the values of a random vector sampled
independently and with the same distribution for all trees in the forest. The generalization
error for forests converges to a limit as the number of trees in the forest becomes large
[Cutler et al. 2012].

2.4. Evolutionary process prediction
To verify if the model is capable of predicting the entire evolutionary process of a GA
only with the information of its initialization parameters. it is necessary to generate the
values of the features of each generation. To do this, as in [Almeida et al. 2021], simply
replicate the initialization parameters for all generations, and for feature CurrentGen a
sequence of integers from 1 to G is generated, where G = StopGen.

To carry out this test, 2 parameter configurations for a GA were generated, main-
taining the same parameter rules imposed in the generation of data for the training and
validation of the model. The configurations are C1 = {PopSize : 183, StopGen :
312, CxPb : 0.79,MxPb : 0.03, Elitism : 4, LowerBound : −6.0, UpperBound :
472.0} and C2 = {PopSize : 83, StopGen : 304, CxPb : 0.94,MxPb : 0.02, Elitism :
7, LowerBound : −364.0, UpperBound : 259.0}

3. Results and Discussions
In accordance with the original work, the use of the model to predict the targets of a
complete evolutionary process proved to be very effective, in the same way it is noticed
that the target MinFitness (best individuals fitness) and AvgFitness are the values that
the model can more easily predict when compared to MaxFitness (worst individual
fitness). This can be seen in figure 2, which presents the results of the predictions for
parameter configuration C1.

Figure 2. Results of model predictions under parameter configuration C1.

Figure 2 makes evident the model’s superiority in predicting the MinFitness
and AvgFitness values of each generation, but this time, different from the original
work, the model does not get close to the MaxFitness real values. The prediction of
the evolutionary process of the parameter configuration C1 obtained MAE of 2505.26.
In fact, the errors generated by the predictions of MaxFitness target end up negatively
affecting the error metric. Below, in figure 3, the result of the predictions for configuration
C2 is shown.



Figure 3. Results of model predictions under parameter configuration C2.

4. Conclusions
The results presented in this paper confirm the great potential in this approach. The origi-
nal work had bad times during the validation of the results mainly because of the problem
adopted, which was a very non-realistic problem in the context of optimization through
GAs.

The main contribution of this paper complementing the original work, is the con-
firmation that it is possible to use this approach in the context of more complex problems
with many local optimums with a wide search space.
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