Perfilamento e Analise de Escalabilidade de Codigo em um
Sistema Distribuido com o PaScal Analyzer: Um Estudo de
Caso

Felipe H. Santos-da-Silva', Jilio F. Peixoto Gomes?, Joao B. Fernandes?,
Samuel Xavier-de-Souza?, Italo A. S. Assis’

! Departamento de Engenharias e Tecnologia
Universidade Federal Rural do Semi-Arido (UFERSA)

2Departamento de Engenharia de Computacdo e Automacio
Universidade Federal do Rio Grande do Norte (UFRN)

felipe.silva65229@alunos.ufersa.edu.br,
julio.freire.098@ufrn.edu.br,
joao.batista.fernandes.094Q@ufrn.edu.br,

samuel@dca.ufrn.br, italo.assis@ufersa.edu.br

Resumo. Este trabalho apresenta uma extensdo do PaScal Analyzer, ferramenta
para andlise de escalabilidade, originalmente focada em aplicacées OpenMP,
agora adaptada para ambientes distribuidos via instrumentacdo manual e co-
leta de dados desacoplada. Aplicado ao benchmark NAS, o método identificou
gargalos regionais, indicando seu potencial para andlise e otimizacdo em sis-
temas distribuidos.

1. Introducao

A andlise de escalabilidade € essencial no desenvolvimento de aplicagdes de alto desem-
penho (HPC), pois orienta otimizag¢des, identifica gargalos e permite compreender o com-
portamento da aplica¢do em diferentes configuragdes. Apesar da variedade de ferramentas
disponiveis, muitas se limitam a andlises pontuais, dificultando a avalia¢ao da escalabili-
dade em aplicacdes com multiplas regides ou configuracdes. Ferramentas especializadas
que automatizam a coleta e andlise continua de métricas tornam-se, assim, fundamentais.

Diversas abordagens ja foram propostas: ferramentas por amostragem, como
[Adhianto et al. 2010] e [Schulz et al. 2008], exigem calibragao e podem gerar dados ex-
cessivos ou incompletos; ja solucdes com instrumentacdo, como [Kniipfer et al. 2012],
[Shende and Malony 2006], [Madsen et al. 2020] e [Boehme et al. 2016], oferecem gran-
ularidade, mas geralmente seu uso envolve um processo complexo exigindo configuragdes
especificas. Novas propostas, como [Fan etal. 2024], [Boehme et al. 2021] e
[Eberius 2020], buscam menor intrusdo, mas com limita¢des em escopo ou dependéncias.

O PaScal Analyzer, proposto em [da Silva et al. 2022], introduz uma analise de
escalabilidade regional para OpenMP. Este trabalho estende essa abordagem para ambi-
entes distribuidos com MPI, utilizando instrumenta¢do manual e coleta via sockets, sem

dependéncias externas. Avaliado no Integer Sort (IS), um dos kernels do NAS Parallel
Benchmarks (NPB), o método identifica gargalos regionais.

O artigo esta organizado da seguinte forma: A Secdo 2 apresenta a ferramenta; A
Secdo 3 detalha o objeto de estudo; A Secdo 4 discute os testes e resultados; e a Sec¢do 5
traz as conclusdes.

2. PaScal Analyzer

O PaScal Analyzer € uma ferramenta para avaliacdo de escalabilidade em aplicagdes par-
alelas em C/C++, com suporte a ambientes de memoria compartilhada (OpenMP) e dis-
tribuida (MPI). Para c6digos OpenMP compilados com GCC, a instrumentag¢do pode ser
automatica ou manual; ja para MPI, é exclusivamente manual.

A ferramenta permite configurar pardmetros como nimero de nticleos, processos,
entradas e repeticoes, além de delimitar regides especificas do cddigo. Os dados sao
agregados em um arquivo JSON, facilitando a visualiza¢do e comparacdo dos resultados.

Este trabalho apresenta a extensdo da ferramenta para suporte a aplicagcdes MPI.
Cada processo mede localmente as regides instrumentadas, armazena os dados em buffer e
os envia, ao final da execucao, via socket TCP/IP ao PaScal Analyzer. Foram adicionados
os argumentos ——ranks, que define a quantidade de processos executados (ex.: 4, 2, 1),
e ——mpi, que configura o comando de execucdo (ex.: mpirun).

3. NAS Parallel Benchmark IS

O NAS Parallel Benchmarks (NPB) é amplamente usado para avaliar o desempenho de
sistemas paralelos [Bailey et al. 1994]. Neste trabalho, utilizamos o kernel Integer Sort
(IS), que ordena inteiros pseudoaleatérios com o algoritmo counting sort, adaptado para
execugdo paralela em memoria distribuida.

Removemos a restricdo original de minimo de quatro processos, permitindo
testes com apenas um. Também integramos o cabegalho pascalops.h, com macros
pascal_start () epascal_stop (), para marcar regides criticas e coletar dados de
tempo de execugao.

4. Experimentos e Resultados

Os testes foram realizados no supercomputador NPAD (UFRN), com 8 nés contendo 2
CPUs Intel Xeon E5-2698v3 (16 nicleos, 2.3 GHz) e 128 GB de RAM. Foram utilizadas
as classes A, B e C do benchmark IS, representando crescentes tamanhos de problema.
Classes superiores foram evitadas por limitagdes de memoria por no.

A Tabela 1 resume os parametros das classes utilizadas, que impactam diretamente
na carga computacional:

» Tamanho do problema (2"): niimero de chaves ordenadas.
» Nimero de chaves (/V*): volume total de dados.

« Intervalo das chaves (/*): define os baldes para ordenagio.
« Tamanho do bucket (/V°): capacidade dos baldes internos.

Table 1. Parametros das classes do benchmark IS (NAS).
Classe | 2V NF I* [N?
A 218 262.144 211 1 915
B 222 1 4194304 | 2'5 | 2%
C 227 | 134.217.728 | 220 | 224

4.1. Avaliacao com o PaScal Analyzer

Executamos o IS com 1, 2, 4 e 8 processos MPI, com 10 repeti¢cdes por configuracdo. A
Tabela 2 mostra o speedup e a eficiéncia global.

Table 2. Speedup e eficiéncia global por classe e numero de processos.

Classe Speedup | Eficiéncia (%)

2 4 8|2 4 8
A 1.65 1.85 182|824 463 22.7
B 1.82 343 5.10 {909 858 63.8
C 191 3778 6.39 957 944 799

A escalabilidade melhora com o aumento do problema. A classe A perde
eficiéncia com 8 processos devido ao overhead em regides pouco custosas. Para investi-
gar, analisamos o lago principal da funcdo rank, instrumentado conforme a Listagem 1.

| #include "pascalops.h"

>|pascal_start (0);

3l for (iteration = 1; iteration <= MAX_ITERATIONS; iteration++)
4 rank (iteration);

slpascal_stop(0);

Listing 1. Trecho instrumentado da regiao 0.

A Tabela 3 mostra o excelente desempenho dessa regido, com quase speedup lin-
ear mesmo com 8 processos. Isso evidencia que os gargalos globais vém de outras regides
menos paralelizaveis. Os resultados reforcam a utilidade do PaScal Analyzer na detecgao
de gargalos regionais e na orientacao de otimizagdes direcionadas.

Table 3. Speedup e eficiéncia da regiao 0.

Classe Speedup | Eficiéncia (%)

2 4 8 | 2 4 8
A 194 471 794 197.0 117.8 99.2
B 194 425 7921972 1063 99.0
C 196 430 7.99 979 1074 999

5. Conclusao

Este trabalho apresentou uma extensdo do PaScal Analyzer para ambientes distribuidos,
demonstrando sua capacidade de identificar gargalos regionais com sobrecarga reduzida.

Os resultados com o benchmark Integer Sort da NASA Advanced Supercomputing evi-
denciam a efetividade da abordagem. Trabalhos futuros incluem suporte automatizado a
instrumentagdo MPI e medi¢do de intrusdo da nossa proposta.

References

Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J., and
Tallent, N. R. (2010). Hpctoolkit: Tools for performance analysis of optimized parallel
programs. Concurrency and Computation: Practice and Experience, 22(6):685-701.

Bailey, D. H., Barszcz, E., Barton, J. T., Browning, D. S., Carter, R. L., Dagum, L.,
Fatoohi, R., Fineberg, S., Frederickson, P. O., Lasinski, T. A., Schreiber, R. S., Si-
mon, H. D., Venkatakrishnan, V., and Weeratunga, S. (1994). The nas parallel bench-
marks. Technical Report RNR-94-007, NASA Ames Research Center, Moffett Field,
CA, USA. NASA Technical Report.

Boehme, D., Aschwanden, P., Pearce, O., Weiss, K., and LeGendre, M. (2021). Ubiqui-
tous performance analysis. In Chamberlain, B. L., Varbanescu, A.-L., Ltaief, H., and
Luszczek, P., editors, High Performance Computing, pages 431-449, Cham. Springer
International Publishing.

Boehme, D., Gamblin, T., Beckingsale, D., Bremer, P.-T., Gimenez, A., LeGendre, M.,
Pearce, O., and Schulz, M. (2016). Caliper: performance introspection for hpc software
stacks. In SC’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 550-560. IEEE.

da Silva, V. R. G., da Silva, A. B. N., Valderrama, C., Manneback, P., and Xavier-de
Souza, S. (2022). A minimally intrusive approach for automatic assessment of parallel
performance scalability of shared-memory hpc applications. Electronics, 11(5).

Eberius, D. (2020). Providing Insight into the Performance of Distributed Applications
Through Low-Level Metrics. PhD thesis, University of Tennessee.

Fan, K., Kesavan, S., Petruzza, S., and Kumar, S. (2024). Tinyprof: Towards contin-
uous performance introspection through scalable parallel i/0. In Proceedings of the
International Supercomputing Conference (ISC), pages 1-12. IEEE.

Kniipfer, A., Rossel, C., Mey, D. a., Biersdorff, S., Diethelm, K., Eschweiler, D., Geimer,
M., Gerndt, M., Lorenz, D., Malony, A., et al. (2012). Score-p: A joint performance
measurement run-time infrastructure for periscope, scalasca, tau, and vampir. In Tools
for High Performance Computing 2011: Proceedings of the 5th International Work-
shop on Parallel Tools for High Performance Computing, September 2011, ZIH, Dres-
den, pages 79-91. Springer.

Madsen, J. R., Awan, M. G., Brunie, H., Deslippe, J., Gayatri, R., Oliker, L., Wang,
Y., Yang, C., and Williams, S. (2020). Timemory: modular performance analysis for
hpc. In High Performance Computing: 35th International Conference, ISC High Per-
formance 2020, Frankfurt/Main, Germany, June 22-25, 2020, Proceedings 35, pages
434-452. Springer.

Schulz, M., Galarowicz, J., Maghrak, D., Hachfeld, W., Montoya, D., and Cranford, S.
(2008). Open— speedshop: An open source infrastructure for parallel performance
analysis. Scientific Programming, 16.

Shende, S. S. and Malony, A. D. (2006). The tau parallel performance system. The
International Journal of High Performance Computing Applications, 20(2):287-311.

