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Resumo. Este trabalho apresenta uma extensão do PaScal Analyzer, ferramenta
para análise de escalabilidade, originalmente focada em aplicações OpenMP,
agora adaptada para ambientes distribuı́dos via instrumentação manual e co-
leta de dados desacoplada. Aplicado ao benchmark NAS, o método identificou
gargalos regionais, indicando seu potencial para análise e otimização em sis-
temas distribuı́dos.

1. Introdução
A análise de escalabilidade é essencial no desenvolvimento de aplicações de alto desem-
penho (HPC), pois orienta otimizações, identifica gargalos e permite compreender o com-
portamento da aplicação em diferentes configurações. Apesar da variedade de ferramentas
disponı́veis, muitas se limitam a análises pontuais, dificultando a avaliação da escalabili-
dade em aplicações com múltiplas regiões ou configurações. Ferramentas especializadas
que automatizam a coleta e análise contı́nua de métricas tornam-se, assim, fundamentais.

Diversas abordagens já foram propostas: ferramentas por amostragem, como
[Adhianto et al. 2010] e [Schulz et al. 2008], exigem calibração e podem gerar dados ex-
cessivos ou incompletos; já soluções com instrumentação, como [Knüpfer et al. 2012],
[Shende and Malony 2006], [Madsen et al. 2020] e [Boehme et al. 2016], oferecem gran-
ularidade, mas geralmente seu uso envolve um processo complexo exigindo configurações
especı́ficas. Novas propostas, como [Fan et al. 2024], [Boehme et al. 2021] e
[Eberius 2020], buscam menor intrusão, mas com limitações em escopo ou dependências.

O PaScal Analyzer, proposto em [da Silva et al. 2022], introduz uma análise de
escalabilidade regional para OpenMP. Este trabalho estende essa abordagem para ambi-
entes distribuı́dos com MPI, utilizando instrumentação manual e coleta via sockets, sem



dependências externas. Avaliado no Integer Sort (IS), um dos kernels do NAS Parallel
Benchmarks (NPB), o método identifica gargalos regionais.

O artigo está organizado da seguinte forma: A Seção 2 apresenta a ferramenta; A
Seção 3 detalha o objeto de estudo; A Seção 4 discute os testes e resultados; e a Seção 5
traz as conclusões.

2. PaScal Analyzer

O PaScal Analyzer é uma ferramenta para avaliação de escalabilidade em aplicações par-
alelas em C/C++, com suporte a ambientes de memória compartilhada (OpenMP) e dis-
tribuı́da (MPI). Para códigos OpenMP compilados com GCC, a instrumentação pode ser
automática ou manual; já para MPI, é exclusivamente manual.

A ferramenta permite configurar parâmetros como número de núcleos, processos,
entradas e repetições, além de delimitar regiões especı́ficas do código. Os dados são
agregados em um arquivo JSON, facilitando a visualização e comparação dos resultados.

Este trabalho apresenta a extensão da ferramenta para suporte a aplicações MPI.
Cada processo mede localmente as regiões instrumentadas, armazena os dados em buffer e
os envia, ao final da execução, via socket TCP/IP ao PaScal Analyzer. Foram adicionados
os argumentos --ranks, que define a quantidade de processos executados (ex.: 4,2,1),
e --mpi, que configura o comando de execução (ex.: mpirun).

3. NAS Parallel Benchmark IS

O NAS Parallel Benchmarks (NPB) é amplamente usado para avaliar o desempenho de
sistemas paralelos [Bailey et al. 1994]. Neste trabalho, utilizamos o kernel Integer Sort
(IS), que ordena inteiros pseudoaleatórios com o algoritmo counting sort, adaptado para
execução paralela em memória distribuı́da.

Removemos a restrição original de mı́nimo de quatro processos, permitindo
testes com apenas um. Também integramos o cabeçalho pascalops.h, com macros
pascal start() e pascal stop(), para marcar regiões crı́ticas e coletar dados de
tempo de execução.

4. Experimentos e Resultados

Os testes foram realizados no supercomputador NPAD (UFRN), com 8 nós contendo 2
CPUs Intel Xeon E5-2698v3 (16 núcleos, 2.3 GHz) e 128 GB de RAM. Foram utilizadas
as classes A, B e C do benchmark IS, representando crescentes tamanhos de problema.
Classes superiores foram evitadas por limitações de memória por nó.

A Tabela 1 resume os parâmetros das classes utilizadas, que impactam diretamente
na carga computacional:

• Tamanho do problema (2N ): número de chaves ordenadas.
• Número de chaves (Nk): volume total de dados.
• Intervalo das chaves (Ik): define os baldes para ordenação.
• Tamanho do bucket (N b): capacidade dos baldes internos.



Table 1. Parâmetros das classes do benchmark IS (NAS).
Classe 2N Nk Ik N b

A 218 262.144 211 215

B 222 4.194.304 215 219

C 227 134.217.728 220 224

4.1. Avaliação com o PaScal Analyzer
Executamos o IS com 1, 2, 4 e 8 processos MPI, com 10 repetições por configuração. A
Tabela 2 mostra o speedup e a eficiência global.

Table 2. Speedup e eficiência global por classe e número de processos.

Classe Speedup Eficiência (%)

2 4 8 2 4 8

A 1.65 1.85 1.82 82.4 46.3 22.7
B 1.82 3.43 5.10 90.9 85.8 63.8
C 1.91 3.78 6.39 95.7 94.4 79.9

A escalabilidade melhora com o aumento do problema. A classe A perde
eficiência com 8 processos devido ao overhead em regiões pouco custosas. Para investi-
gar, analisamos o laço principal da função rank, instrumentado conforme a Listagem 1.

1 #include "pascalops.h"
2 pascal_start(0);
3 for (iteration = 1; iteration <= MAX_ITERATIONS; iteration++)
4 rank(iteration);
5 pascal_stop(0);

Listing 1. Trecho instrumentado da região 0.

A Tabela 3 mostra o excelente desempenho dessa região, com quase speedup lin-
ear mesmo com 8 processos. Isso evidencia que os gargalos globais vêm de outras regiões
menos paralelizáveis. Os resultados reforçam a utilidade do PaScal Analyzer na detecção
de gargalos regionais e na orientação de otimizações direcionadas.

Table 3. Speedup e eficiência da região 0.

Classe Speedup Eficiência (%)

2 4 8 2 4 8

A 1.94 4.71 7.94 97.0 117.8 99.2
B 1.94 4.25 7.92 97.2 106.3 99.0
C 1.96 4.30 7.99 97.9 107.4 99.9

5. Conclusão
Este trabalho apresentou uma extensão do PaScal Analyzer para ambientes distribuı́dos,
demonstrando sua capacidade de identificar gargalos regionais com sobrecarga reduzida.



Os resultados com o benchmark Integer Sort da NASA Advanced Supercomputing evi-
denciam a efetividade da abordagem. Trabalhos futuros incluem suporte automatizado à
instrumentação MPI e medição de intrusão da nossa proposta.
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