
Perfilamento e Análise de Escalabilidade de Código em um
Sistema Distribuı́do com o PaScal Analyzer: Um Estudo de

Caso
Felipe H. Santos-da-Silva1, Júlio F. Peixoto Gomes2, João B. Fernandes2,

Samuel Xavier-de-Souza2, Ítalo A. S. Assis1

1 Departamento de Engenharias e Tecnologia
Universidade Federal Rural do Semi-Árido (UFERSA)

2Departamento de Engenharia de Computação e Automação
Universidade Federal do Rio Grande do Norte (UFRN)

felipe.silva65229@alunos.ufersa.edu.br,

julio.freire.098@ufrn.edu.br,

joao.batista.fernandes.094@ufrn.edu.br,

samuel@dca.ufrn.br, italo.assis@ufersa.edu.br

Resumo. Este trabalho apresenta uma extensão do PaScal Analyzer, ferramenta
para análise de escalabilidade, originalmente focada em aplicações OpenMP,
agora adaptada para ambientes distribuı́dos via instrumentação manual e co-
leta de dados desacoplada. Aplicado ao benchmark NAS, o método identificou
gargalos regionais, indicando seu potencial para análise e otimização em sis-
temas distribuı́dos.

1. Introdução
A análise de escalabilidade é essencial no desenvolvimento de aplicações de alto desem-
penho (HPC), pois orienta otimizações, identifica gargalos e permite compreender o com-
portamento da aplicação em diferentes configurações. Apesar da variedade de ferramentas
disponı́veis, muitas se limitam a análises pontuais, dificultando a avaliação da escalabili-
dade em aplicações com múltiplas regiões ou configurações. Ferramentas especializadas
que automatizam a coleta e análise contı́nua de métricas tornam-se, assim, fundamentais.

Diversas abordagens já foram propostas: ferramentas por amostragem, como
[Adhianto et al. 2010] e [Schulz et al. 2008], exigem calibração e podem gerar dados ex-
cessivos ou incompletos; já soluções com instrumentação, como [Knüpfer et al. 2012],
[Shende and Malony 2006], [Madsen et al. 2020] e [Boehme et al. 2016], oferecem gran-
ularidade, mas geralmente seu uso envolve um processo complexo exigindo configurações
especı́ficas. Novas propostas, como [Fan et al. 2024], [Boehme et al. 2021] e
[Eberius 2020], buscam menor intrusão, mas com limitações em escopo ou dependências.

O PaScal Analyzer, proposto em [da Silva et al. 2022], introduz uma análise de
escalabilidade regional para OpenMP. Este trabalho estende essa abordagem para ambi-
entes distribuı́dos com MPI, utilizando instrumentação manual e coleta via sockets, sem



dependências externas. Avaliado no Integer Sort (IS), um dos kernels do NAS Parallel
Benchmarks (NPB), o método identifica gargalos regionais.

O artigo está organizado da seguinte forma: A Seção 2 apresenta a ferramenta; A
Seção 3 detalha o objeto de estudo; A Seção 4 discute os testes e resultados; e a Seção 5
traz as conclusões.

2. PaScal Analyzer

O PaScal Analyzer é uma ferramenta para avaliação de escalabilidade em aplicações par-
alelas em C/C++, com suporte a ambientes de memória compartilhada (OpenMP) e dis-
tribuı́da (MPI). Para códigos OpenMP compilados com GCC, a instrumentação pode ser
automática ou manual; já para MPI, é exclusivamente manual.

A ferramenta permite configurar parâmetros como número de núcleos, processos,
entradas e repetições, além de delimitar regiões especı́ficas do código. Os dados são
agregados em um arquivo JSON, facilitando a visualização e comparação dos resultados.

Este trabalho apresenta a extensão da ferramenta para suporte a aplicações MPI.
Cada processo mede localmente as regiões instrumentadas, armazena os dados em buffer e
os envia, ao final da execução, via socket TCP/IP ao PaScal Analyzer. Foram adicionados
os argumentos --ranks, que define a quantidade de processos executados (ex.: 4,2,1),
e --mpi, que configura o comando de execução (ex.: mpirun).

3. NAS Parallel Benchmark IS

O NAS Parallel Benchmarks (NPB) é amplamente usado para avaliar o desempenho de
sistemas paralelos [Bailey et al. 1994]. Neste trabalho, utilizamos o kernel Integer Sort
(IS), que ordena inteiros pseudoaleatórios com o algoritmo counting sort, adaptado para
execução paralela em memória distribuı́da.

Removemos a restrição original de mı́nimo de quatro processos, permitindo
testes com apenas um. Também integramos o cabeçalho pascalops.h, com macros
pascal start() e pascal stop(), para marcar regiões crı́ticas e coletar dados de
tempo de execução.

4. Experimentos e Resultados

Os testes foram realizados no supercomputador NPAD (UFRN), com 8 nós contendo 2
CPUs Intel Xeon E5-2698v3 (16 núcleos, 2.3 GHz) e 128 GB de RAM. Foram utilizadas
as classes A, B e C do benchmark IS, representando crescentes tamanhos de problema.
Classes superiores foram evitadas por limitações de memória por nó.

A Tabela 1 resume os parâmetros das classes utilizadas, que impactam diretamente
na carga computacional:

• Tamanho do problema (2N ): número de chaves ordenadas.
• Número de chaves (Nk): volume total de dados.
• Intervalo das chaves (Ik): define os baldes para ordenação.
• Tamanho do bucket (N b): capacidade dos baldes internos.



Table 1. Parâmetros das classes do benchmark IS (NAS).
Classe 2N Nk Ik N b

A 218 262.144 211 215

B 222 4.194.304 215 219

C 227 134.217.728 220 224

4.1. Avaliação com o PaScal Analyzer
Executamos o IS com 1, 2, 4 e 8 processos MPI, com 10 repetições por configuração. A
Tabela 2 mostra o speedup e a eficiência global.

Table 2. Speedup e eficiência global por classe e número de processos.

Classe Speedup Eficiência (%)

2 4 8 2 4 8

A 1.65 1.85 1.82 82.4 46.3 22.7
B 1.82 3.43 5.10 90.9 85.8 63.8
C 1.91 3.78 6.39 95.7 94.4 79.9

A escalabilidade melhora com o aumento do problema. A classe A perde
eficiência com 8 processos devido ao overhead em regiões pouco custosas. Para investi-
gar, analisamos o laço principal da função rank, instrumentado conforme a Listagem 1.

1 #include "pascalops.h"
2 pascal_start(0);
3 for (iteration = 1; iteration <= MAX_ITERATIONS; iteration++)
4 rank(iteration);
5 pascal_stop(0);

Listing 1. Trecho instrumentado da região 0.

A Tabela 3 mostra o excelente desempenho dessa região, com quase speedup lin-
ear mesmo com 8 processos. Isso evidencia que os gargalos globais vêm de outras regiões
menos paralelizáveis. Os resultados reforçam a utilidade do PaScal Analyzer na detecção
de gargalos regionais e na orientação de otimizações direcionadas.

Table 3. Speedup e eficiência da região 0.

Classe Speedup Eficiência (%)

2 4 8 2 4 8

A 1.94 4.71 7.94 97.0 117.8 99.2
B 1.94 4.25 7.92 97.2 106.3 99.0
C 1.96 4.30 7.99 97.9 107.4 99.9

5. Conclusão
Este trabalho apresentou uma extensão do PaScal Analyzer para ambientes distribuı́dos,
demonstrando sua capacidade de identificar gargalos regionais com sobrecarga reduzida.



Os resultados com o benchmark Integer Sort da NASA Advanced Supercomputing evi-
denciam a efetividade da abordagem. Trabalhos futuros incluem suporte automatizado à
instrumentação MPI e medição de intrusão da nossa proposta.

References
Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J., and

Tallent, N. R. (2010). Hpctoolkit: Tools for performance analysis of optimized parallel
programs. Concurrency and Computation: Practice and Experience, 22(6):685–701.

Bailey, D. H., Barszcz, E., Barton, J. T., Browning, D. S., Carter, R. L., Dagum, L.,
Fatoohi, R., Fineberg, S., Frederickson, P. O., Lasinski, T. A., Schreiber, R. S., Si-
mon, H. D., Venkatakrishnan, V., and Weeratunga, S. (1994). The nas parallel bench-
marks. Technical Report RNR-94-007, NASA Ames Research Center, Moffett Field,
CA, USA. NASA Technical Report.

Boehme, D., Aschwanden, P., Pearce, O., Weiss, K., and LeGendre, M. (2021). Ubiqui-
tous performance analysis. In Chamberlain, B. L., Varbanescu, A.-L., Ltaief, H., and
Luszczek, P., editors, High Performance Computing, pages 431–449, Cham. Springer
International Publishing.

Boehme, D., Gamblin, T., Beckingsale, D., Bremer, P.-T., Gimenez, A., LeGendre, M.,
Pearce, O., and Schulz, M. (2016). Caliper: performance introspection for hpc software
stacks. In SC’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 550–560. IEEE.

da Silva, V. R. G., da Silva, A. B. N., Valderrama, C., Manneback, P., and Xavier-de
Souza, S. (2022). A minimally intrusive approach for automatic assessment of parallel
performance scalability of shared-memory hpc applications. Electronics, 11(5).

Eberius, D. (2020). Providing Insight into the Performance of Distributed Applications
Through Low-Level Metrics. PhD thesis, University of Tennessee.

Fan, K., Kesavan, S., Petruzza, S., and Kumar, S. (2024). Tinyprof: Towards contin-
uous performance introspection through scalable parallel i/o. In Proceedings of the
International Supercomputing Conference (ISC), pages 1–12. IEEE.

Knüpfer, A., Rössel, C., Mey, D. a., Biersdorff, S., Diethelm, K., Eschweiler, D., Geimer,
M., Gerndt, M., Lorenz, D., Malony, A., et al. (2012). Score-p: A joint performance
measurement run-time infrastructure for periscope, scalasca, tau, and vampir. In Tools
for High Performance Computing 2011: Proceedings of the 5th International Work-
shop on Parallel Tools for High Performance Computing, September 2011, ZIH, Dres-
den, pages 79–91. Springer.

Madsen, J. R., Awan, M. G., Brunie, H., Deslippe, J., Gayatri, R., Oliker, L., Wang,
Y., Yang, C., and Williams, S. (2020). Timemory: modular performance analysis for
hpc. In High Performance Computing: 35th International Conference, ISC High Per-
formance 2020, Frankfurt/Main, Germany, June 22–25, 2020, Proceedings 35, pages
434–452. Springer.

Schulz, M., Galarowicz, J., Maghrak, D., Hachfeld, W., Montoya, D., and Cranford, S.
(2008). Open— speedshop: An open source infrastructure for parallel performance
analysis. Scientific Programming, 16.

Shende, S. S. and Malony, A. D. (2006). The tau parallel performance system. The
International Journal of High Performance Computing Applications, 20(2):287–311.


