An Approach Based on Partial Executions for Evaluating the
Scalability of Parallel Applications

Reilta Christine Dantas Maia', Samuel Xavier-de-Souza'

! Departamento de Engenharia de Computacdo e Automacio
Universidade Federal do Rio Grande do Norte (UFRN)
59.078-970 — Natal — RN — Brazil

reilta.maia.701l@ufrn.edu.br, samuel@dca.ufrn.br

Abstract. Scalability analysis is crucial for developers to gauge how their ap-
plications perform under varying resource and workload conditions. However,
analyzing complex applications can be time-consuming. This study proposes a
partial execution approach in the Parallel Scalability Analyzer tool, leveraging
the Paramount Iteration technique. This approach holds significant potential for
reducing scalability analysis time.

1. Introduction

The use of parallelization techniques and the increase in computational resources
are alternatives for solving increasingly complex problems. However, according to
[Nguyen et al. 2016], optimizing the performance of parallel applications is becoming
increasingly challenging, given that they need to scale as computational resources incre-
ases. In this context, scalability analysis is a great ally for developers and researchers
to help identify application bottlenecks. However, these analyses require execution ti-
mes that can be long, depending on the complexity of the application. In this context,
this study proposes the implementation of a partial execution approach with the Para-
mount Iteration technique in the scalability analysis tool, Parallel Scalability Analyzer
[da Silva et al. 2022], to make the analysis process more agile. This technique estimates
the total execution time by focusing on a specific percentage of iterations, eliminating the
need for complete execution.

2. Proposed Approach

The Paramount Iteration technique was proposed by [Tavares et al. 2019] as an alternative
to help choose cloud computing configurations, since it is necessary to carry out tests to
evaluate the performance and scalability of applications in various configurations. The
proposed technique eliminates the need to run applications in their entirety. Just a few
portions of the applications would be enough to estimate their behavior. It was based on
the premise that the applications have a repetitive nature, since most parallel codes are
iterative and behave predictably after a minimal initial period [Yang et al. 2005].

The approach proposed in this work was designed with the objective of redu-
cing the execution time for obtaining results and analyses of applications, considering
that execution can be extremely time-consuming, especially for applications in high-
performance computing environments. To achieve this, a manual instrumentation rou-
tine, pascal_paramount, was developed, which allows the user to delimit a region of
interest in the source code.



The user specifies three key parameters for pascal _paramount: the re-
gion identifier (id), the number of iterations to be effectively executed and measured
(paramount), and the total number of iterations for the region (total_it). To ensure
data integrity and avoid synchronization overhead in multithreaded environments, atomic
variables are employed for controlling iterations and handling critical data.

After executing the paramount iterations, the time for the remaining iterations
is estimated based on the median of the measured times — a choice made to mitigate
the impact of initial overheads (e.g., cache misses). Once the estimation is completed
for all threads, the application is terminated prematurely, and the total estimated time is
calculated, significantly optimizing the analysis process.

Validation tests were conducted on the compute nodes of the High-Performance
Computing Center (NPAD/UFRN) using two applications: a matrix-based code
and a ray tracing code. In the matrix tests, execution time estimates using
pascal_paramount () showed relative errors often below 1% and achieved time re-
ductions of over 80% with smaller paramount values (e.g., 10%).

For the ray tracing application, which features more irregular iteration behavior,
estimation errors were higher—often exceeding 10%—with lower gains in execution
time. These results demonstrate that the approach is particularly effective for applica-
tions with consistent per-iteration workloads.

For future work, the intention is to develop a more advanced model to identify and
handle estimates that behave as outliers. An estimate is considered an outlier when its me-
asured iterations diverge significantly from the application’s average behavior, a common
issue in codes with high workload variability. The proposed model will discard these dis-
crepant estimates and replace them with more representative measurements. Furthermore,
we aim to create an automated routine to define the ideal Paramount Iteration rate based
on tests from a few representative resource configurations and workloads. This approach
will eliminate user intervention in selecting the rate, using the best-found rate to estimate
remaining configurations and thus obtain scalability results more quickly.

References

[da Silva et al. 2022] da Silva, V., da Silva, A., Valderrama, C., Manneback, P., and
Xavier-de Souza, S. (2022). A minimally intrusive approach for automatic assessment
of parallel performance scalability of shared-memory hpc applications. Electronics,
11:689.

[Nguyen et al. 2016] Nguyen, H. T., Wei, L., Bhatele, A., Gamblin, T., Boehme, D.,
Schulz, M., Ma, K.-L., and Bremer, P.-T. (2016). VIPACT: A visualization interface for
analyzing calling context trees. In Proceedings of the Workshop on Visual Performance
Analysis, pages 1-8. IEEE Press.

[Tavares et al. 2019] Tavares, W., Reis, L., Brunetta, J., and Borin, E. (2019). Aplicacao
da técnica paramount iteration nas aplicacdes blast € dnn-rom na nuvem computaci-
onal. In Anais do XX Simpdsio em Sistemas Computacionais de Alto Desempenho,
pages 228-239. SBC.

[Yang et al. 2005] Yang, L. T., Ma, X., and Mueller, F. (2005). Cross-platform perfor-
mance prediction of parallel applications using partial execution. IEEE.



