
Multi-Queue Scheduler for the CD-MOJ Platform

Lucas G. Caldas1, Bruno C. Ribas2

1Faculdade do Gama (FGA) – Universidade de Brası́lia (UnB)
Brası́lia – DF – Brazil

lucasgcaldas01@gmail.com, bruno.ribas@unb.br

Abstract. This paper presents the implementation of a multi-queue scheduler in
the CD-MOJ system, which is used in programming courses and competitions
at UnB FGA. The goal is to improve submission correction efficiency by prior-
itizing tasks based on their importance. Results show a reduction in response
time from 12.33 to 9.86 seconds, representing a 20.03% improvement. The work
highlights the importance of efficient scheduling to optimize resource allocation
and user experience in online judge platforms.

Resumo. Este artigo apresenta a implementação de um escalonador de
múltiplas filas no sistema CD-MOJ, utilizado em disciplinas de programação
e competições na UnB FGA. O objetivo é melhorar a eficiência na correção de
submissões, priorizando-as conforme sua importância. Os resultados mostram
uma redução no tempo de resposta de 12, 33 para 9, 86 segundos, representando
uma melhoria de 20, 03%. O trabalho ressalta a importância de um escalona-
mento eficiente para otimizar o uso de recursos e a experiência do usuário em
plataformas de juı́zes online.

1. Introduction
The Contest-Driven Meta Online Judge [CD-MOJ ], developed at the University of
Brası́lia (UnB), is an online judge [Wasik et al. 2018] used for algorithm courses. It pro-
vides a vast array of problems for exams and training activities but faces challenges with
high submission volumes and limited computational resources. The varied difficulty lev-
els and problem complexities result in some problems having long time limits while oth-
ers are nearly instantaneous per test instance. The current system processes submissions
semi-sequentially, using a First-Come, First-Served (FCFS) algorithm until all machines
are occupied. This method can cause delays when handling large volumes or complex
problems. This paper proposes a multi-queue scheduling algorithm to address these is-
sues, prioritizing submissions based on importance and enhancing resource allocation and
response times.

This paper is structured as follows: Section 2 provides a brief theoretical back-
ground, Section 3 details our proposed solution, Section 4 evaluates our initial findings,
and Section 5 offers our preliminary conclusions and future work.

2. Theoretical Background
To understand the proposed solution, it’s essential to review the basics of scheduling
in operating systems. Scheduling is the method by which tasks are assigned to CPU
resources for execution. Common algorithms include:



• Round Robin: Each process gets a fixed time quantum. If a task exceeds this
time, it moves to the queue’s end [Tanenbaum and Bos 2016].

• Priority Scheduling: Tasks are executed based on assigned priorities, ensuring
high-priority tasks are processed first. This can lead to starvation for low-priority
tasks [Tanenbaum and Bos 2016].

• Multi-level Queue Scheduling: Combines various scheduling algorithms and
sorts tasks into multiple queues based on their characteristics (e.g., interactive
or batch). Each queue follows different scheduling rules, and tasks can be dynam-
ically shifted between queues [Silberschatz and Galvin 2015].

In the context of CD-MOJ, the most suitable approach is a hybrid solution, where
submissions are divided into multiple queues based on their importance, allowing efficient
prioritization and fair resource distribution.

3. Proposed Solution

The proposed solution introduces a multi-queue scheduler into the CD-MOJ system. Each
submission is classified into one of four priority queues: super priority for critical tasks,
exam queue for submissions during exams, private list for internal exercises, and public
list for general submissions. The scheduler dynamically assigns submissions to available
machines based on priority. A starvation prevention mechanism ensures that low-priority
submissions are promoted to higher-priority queues if they have been waiting for more
than five minutes.

The solution includes modifications to existing scripts and introduces a new cen-
tral scheduler script. This script continuously monitors submission queues and machine
availability, assigning tasks based on priority and machine capacity. An aging mechanism
is implemented to promote long-waiting submissions, preventing indefinite delays. As
shown in Listing 1, the scheduler operates in two phases: first, jobs that require specific
servers are assigned; second, jobs that can run on any server are handled.

Listing 1. Scheduler pseudo-code
1 function run_scheduler() {
2 initialize available_servers;
3 initialize selected_jobs;
4
5 // Phase 1: Assign jobs needing specific servers
6 for each job_queue in priority_queues; do
7 for each job in job_queue; do
8 if no available servers then break;
9 if job requires specific server then

10 assign to available specific server;
11 lock and move job to scheduled list and update metadata;
12 remove server from available_servers;
13 end if;
14 end for;
15 end for;
16
17 // Phase 2: Assign jobs that can run on any server
18 for each job_queue in priority_queues; do
19 for each job in job_queue; do
20 if no available servers then break;
21 if job can run on any server then
22 assign to first available server;
23 lock and move job to scheduled list and update metadata;
24 remove server from available_servers;
25 end if;



26 end for;
27 end for;
28 }

4. Experiments
The proposed system was tested on real-world data from the CD-MOJ platform, with over
60, 000 submissions analyzed. Before the implementation of the scheduler, as shown in
Figure 1(a), the average response time for a submission was 12.33 seconds. After imple-
menting the scheduler, as shown in Figure 1(b), the average response time was reduced to
9.86 seconds, representing a 20.03% improvement.

During high-demand periods, such as exams, the scheduler was able to reduce
response times significantly by prioritizing critical submissions. For example, during
an exam, the average response time decreased from 10.32 seconds to 8.18 seconds, a
substantial improvement in providing timely feedback to students.

(a) Fig. 1 - Avg. Response Time by Contest
Type: No Scheduler

(b) Fig. 2 - Avg. Response Time by Contest
Type: With Scheduler

5. Conclusion
The multi-queue scheduler in the CD-MOJ system effectively manages high volumes of
submissions and optimizes resource allocation. The decreased average response time
highlights the system’s ability to prioritize critical submissions while preventing lower-
priority task starvation. Future improvements include exploring task preemption, par-
allelizing test case correction for enhanced performance, and removing the two-phase
mechanism to distribute jobs across available machines in a single iteration.

References
CD-MOJ. Cd-moj documentation. https://cd-moj.github.io/cd-moj.
docs/. Accessed on 20 de novembro de 2023.

Silberschatz, A. and Galvin, Peter Baer e Gagne, G. (2015). Fundamentos de Sistemas
Operacionais. LTC, Rio de Janeiro, 9ª edição.

Tanenbaum, A. S. and Bos, H. (2016). Sistemas Operacionais Modernos. Pearson Edu-
cation do Brasil, São Paulo, 4ª edição. Tradução Jorge Ritter; revisão técnica Raphael
Y. de Camargo.

Wasik, S., Maj, P., Orzechowski, P., Wiszniewski, B., and Zielinski, K. (2018). A survey
on online judge systems and their applications. ACM Computing Surveys, 51(1).


