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Abstract. Federated Learning is a new area of distributed Machine Learning
(ML) that emerged to deal with data privacy concerns. In this approach, each
client has access to a local and private dataset. They only exchange the model
weights and updates. This paper presents a Federated Learning (FL) approach
to a Tumor-Infiltrating Lymphocytes (TIL) application in a cloud computing en-
vironment. The results show that the FL approach outperformed the centralized
one in all evaluated ML metrics. It also reduced the execution time although the
financial cost has increased.

1. Introduction
In recent years, the rise of data protection laws changed the way several applications
handle their input data, asking for special permissions to manipulate data from different
users. In the context of the Machine Learning (ML) area, when data is spread among
different datasets and machines, processes of a distributed ML application exchange some
data along the execution to train the model. However, in this new context, since data
cannot be shared among different users, another approach to execute machine learning
algorithms in distributed datasets appeared, where processes exchange only the model
weights to obtain a global model, named Federated Learning (FL).

Biomedical applications, for example, which use patients’ data, deal with confi-
dential information. Several of these biomedical applications use a huge amount of data to
predict a patient’s diagnosis. In the case of image data, to extract some information from
them, these applications, usually, execute a deep learning algorithm, like a Convolutional
Neural Network (CNN). A CNN is composed of several layers. Most of them are either
(i) convolutional layers, where the size of the image is reduced by applying a filter to it,
or (ii) full layers (also called fully connected), containing many neurons, each one repre-
sented by a function. Training and extracting information from images, by using CNNs,
require a huge amount of computational power, generally, obtained by using accelerators,
like the Graphic Processing Units (GPUs).

Since several research groups do not have access to datacenters containing current
GPUs, the cloud computing paradigm emerged as an interesting alternative. In clouds,



the user only pays for what he/she uses (pay-as-you-go scheme), with no costs for hard-
ware maintenance or energy consumption. Moreover, the user has access to the newest
computational resources as soon as the provider makes them available to hire. In Amazon
Web Services (AWS), for example, there are many types of virtual machines (VMs), also
called instances, with different NVIDIA GPU architectures, from Kepler to Volta. Con-
cerning the storage to keep the datasets, AWS also offers a service to store files with up
to 5TB of size, called Amazon Simple Storage Service (Amazon S3) 1. S3 offers privacy
guarantees and lets the user grant different access permissions to each file.

In this paper, we present a Federated Learning approach to a Tumor-Infiltrating
Lymphocytes (TIL) application that uses patient images to create TIL maps and predict
the patient’s survival rate. We implemented and evaluated this approach in the Amazon
Web Services cloud provider. The experimental results showed that the proposed FL
approach outperformed the centralized one in all evaluated ML metrics, when using the
same number of training epochs, in a scenario with four clients, each one containing a
private dataset of 1468 samples, 947 being used for training and 521 for testing. Also, it
reduced the execution time by 55%, although has increased the financial cost by 46%.

2. Federated Learning concepts
Federated Learning (FL) was first introduced in [McMahan et al. 2017] when Google re-
searchers presented the Federated Averaging (FedAvg) algorithm and evaluated it with
three different datasets of image recognition and language modeling tasks. Later, they
explained that this algorithm was evaluated in a real application, Google’s Keyboard 2.

In the FL architecture, a central server communicates with all clients to manage
the global model convergence. At each communication round, the server chooses the
clients to participate in the training by sending them a start message. Each participating
client trains its local model with its dataset on a fixed number of training epochs and
sends the updated weights to the server. After receiving the message from the clients,
the server aggregates the received weights to use them as the global model weights. This
is the training phase of the communication round. The second phase is the testing one,
where the server sends to the clients the aggregated weights of the training phase. The
clients receive the weights, update their local models and test the model with their local
test dataset.

3. Related work
Few papers found in the literature present a Federated Learning approach with cloud
computing. Liu et al. [Liu et al. 2020] present a hierarchical FL architecture with mobile
devices as clients. Their idea is to have edge servers aggregating the results of some clients
and sending them to the cloud server. The central server aggregates the results of all edge
servers. The authors present the algorithm using this architecture and the mathematical
analysis of convergence. They only show simulation results to prove their convergence
analysis. Fang et al. [Fang et al. 2020] propose an FL architecture in the cloud focusing
on privacy. Their architecture consists of a central server on the cloud with clients that
uses ElGamal encryption [ElGamal 1985] in all messages. They present how the server

1https://aws.amazon.com/s3/
2https://ai.googleblog.com/2017/04/federated-learning-collaborative.html



and clients exchange their encryption keys as well as how the whole framework works.
As the previous related work, they simulated the FL execution on a single local machine.

The only work we found that runs a Federated Learning approach in a real cloud
environment implements two different machine learning (ML) methods to predict the risk
of diseases related to tobacco and radon [Rajendran et al. 2021]. They implement a neural
network and a logistic regression. The results compare a scenario with two clients in an
asynchronous FL training where each client trains the model at a time.

To the best of our knowledge, most FL tools only support execution on a single
machine, as the TensorFlow Federated 3 and the PySyft [Ryffel et al. 2018]. Both of them
are FL libraries that simulate an FL environment based on a specific Machine Learning
API: the former is based on the TensorFlow [Abadi et al. 2015] and the latter is based on
the PyTorch [Paszke et al. 2019] one. Regarding the tools to execute FL in a real environ-
ment, Flower [Beutel et al. 2020] is presented as a framework that executes a Federated
Learning approach in different devices and machines. The authors implemented the whole
communication layer and also some of the first FL algorithms, including FedAvg. In this
paper, we use the Flower framework as it is simple and allows us the use of any Machine
Learning API underneath it.

4. A Use Case Application in Federated Learning approach
In this section, we present the developed Federated Learning approach applied for
solving a Tumor-Infiltrating Lymphocytes (TIL) classification problem, as described
in [Saltz et al. 2018]. The application solves the problem, receiving as input Whole-Slide
Images (WSIs) and returning TIL maps. The TIL maps aim to obtain the spatial dis-
tribution and the density of TILs in each patient to help cancer treatment. Firstly, the
application divides each WSI into patches of smaller sizes and classifies them as TIL-
positive or TIL-negative by experts. The CNN uses the classified patches as a training
dataset. These steps compose the application training phase. In the production phase,
new WSIs are divided into patches and the CNN classifies these patches into TIL-positive
or TIL-negative. With the TIL-positive patches, the application creates the TIL maps.

We focus only on the CNN training part implementing the VGG16 mo-
del [Simonyan and Zisserman 2015]. In this model, the used patch size is 224× 224 and
defines the patch dimension (height×width). We also set the number of output classes
as two, indicating positive if the patch contains a TIL or negative otherwise. The CNN
uses two distinct datasets: one for training and another to test the model. Besides, the
training dataset is randomly divided into a training and validate dataset. The evaluation
of the proposed FL uses the centralized approach as a baseline.

In our FL approach, we implement the same VGG16 model in all clients and
divide both datasets among them. Thus, each client has two distinct and private datasets:
one for training and another for the test.

5. Experimental Results
Regarding the centralized approach, we selected 3793 patches as the training dataset and
2090 patches as the test dataset. They were obtained from the TCGA repository 4. Both

3https://blog.tensorflow.org/2019/03/introducing-tensorflow-federated.html
4https://cancergenome.nih.gov/



datasets are unbalanced, with 10% of TIL-positive samples in the training dataset and 20%
of positive samples in the test dataset. The CNN selected 10% of the training dataset to
be the validation one. We executed 50 training epochs. We spent less than one dollar per
hour executing the centralized approach in AWS, with a g4dn.2xlarge instance containing
an Nvidia T4 Tensor Core GPU with 16GB of memory.

The Federated Learning approach divides the datasets among four clients homo-
geneously with only 10% of TIL-positive samples in each. Each client selected randomly
10% of the training dataset to be their validation dataset. We executed the clients in diffe-
rent g4dn.2xlarge instances and the server in a t2.xlarge one. We chose a cheaper instance
for the server as it does not require a GPU. We considered four scenarios, varying the num-
ber of communication rounds within 50 training epochs in total. The first scenario has 25
communication rounds with 2 local training epochs each (25 comm. rounds). The second
one has 10 communication rounds with 5 local epochs each (10 comm. rounds) while
the third one has 5 communication rounds with 10 local epochs each (5 comm. rounds).
Finally, the last scenario has only 2 communication rounds with 25 local training epochs
each (2 comm. rounds).

Table 1 compares the results of the centralized approach and all scenarios. The
columns show the model accuracy, precision, specificity, and total execution time and
cost. The model accuracy is the percentage of well-predicted test samples, regardless of
their true class. The precision is the percentage of true positives in all samples predicted
as positive. The specificity shows the opposite, how many true negative samples were
correctly predicted within all samples predicted as negative. The total time considers the
moment from the request of the first VM up to the moment the last VM is terminated. The
total cost includes the cost regarding all clients and the server for each FL scenario.

Tabela 1. Comparison among centralized approach and different number of com-
munication rounds with 4 clients in Federated Learning

Scenario Accuracy Precision Specificity Total exec. Exec.
(%) (%) (%) time costs

Centralized 79.50 50.50 81.00 3:24:36 $2.55
25 comm. rounds 91.29 - 91.29 2:31:13 $7.92
10 comm. rounds 91.41 87.51 91.44 1:32:38 $4.80
5 comm. rounds 91.20 49.31 91.63 1:09:13 $3.53
2 comm. rounds 91.29 - 91.29 0:50:56 $2.59

We can observe that the accuracy of all Federated Learning scenarios is better
than the centralized one. As our dataset is unbalanced, when the FL approaches predict
all samples as negative, they classify correctly most of the samples. For the second and
third FL scenarios, we observe that the model yields a better precision and specificity
than the centralized approach, which explains the better accuracy. We can observe that
in the first and the last scenario the model did not predict any samples as positive. In the
scenario with 25 communication rounds, each client trains for only two epochs per round,
and, thus, the local models do not learn much from the data before communicating. So, at
each communication round, the global model update does not result in significant impro-
vements in the model. Consequently, in this first FL experiment, we obtained the worst
results. When we compare the centralized approach with the best Federated Learning



scenario (10 communication rounds with 5 training epochs each), we observe a decrease
in the execution time by 55% with a corresponding cost increasing by 46%. Moreover,
all metrics presented better results. Note that, although we used four GPU instances in
FL, instead of only one, as in the centralized case, the costs increased only 46%. This
happened because each client had a reduced dataset and spent much less time to finish.
On the other hand, we did not reach a linear speedup due to the communication overhead.

6. Conclusion and future work
This work presented preliminary results of a Federated Learning approach to a Tumor-
Infiltrating Lymphocytes CNN executed in Amazon Web Service (AWS). We executed
four different scenarios varying the communication rounds number. Results show the FL
approach leads to better results than the centralized one in a lower time, being a good
method to deal with privacy concerns.

For future works, we will compare different CNN architectures into the FL ap-
proach and add more ML metrics to our results. Moreover, we plan to execute the FL
approach using AWS cheaper instance types, the spot ones. These instances cost 70%
less but can be revoked at any time. We intend to create a fault-tolerant framework to exe-
cute FL in AWS. Besides, we intend to consider the impact evaluation of using multiple
clouds in the Federated Learning approach.
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