
IMPROVING THE ENERGY-BASED DPA/DEMA ATTACK
FLOW PREPROCESSING PERFORMANCE

Rodrigo Nuevo Lellis1, Rafael Iankowski Soares1

1Group of Architectures and Integrated Circuits (GACI) – UFPel – Pelotas, RS, Brazil

{rn.lellis,rafael.soares}@inf.ufpel.edu.br

Abstract. This paper proposes an improvement in the DPA/DEMA energy-based
attack flow to reduce the time to guess a secret cryptographic key from supposed
secure systems. This was done through the recoding for C ++ language and
parallelization of the algorithms. The results highlight a reduction of up to
78.53% in the execution time of preprocessing algorithms guaranteeing a good
performance even in the majority of off-the-shelf processors available in the
market.

1. Introduction
DPA/DEMA attacks are very sensitive to the alignment of power traces. This led
to the development of several countermeasures based on the misalignment of these
traces [CORON and KIZHVATOV 2009]. However, preprocessing steps like the one
proposed by [LELLIS et al. 2017] can neutralize such measures. The attack flow of
[LELLIS et al. 2017] aims to realign the traces through 3 steps: (i) extracting the tar-
get signature, (ii) subsampling traces, and (iii) energy calculation. These algorithms were
initially implemented in Matlab [MATHWORKS ] and compute a large amount of traces,
i.e., power consumption acquired during the execution of the system, to obtain a success-
ful attack.

The implementation available in Matlab is costly at runtime due to the use of
the virtual machine. For this reason, the translation of the algorithms into a compiled
language such as C++ is essential to reduce the execution time of the preprocessing steps.
In addition, the preprocessing algorithms of [LELLIS et al. 2017] have many loops that
can be parallelized by programming directives that divide the workload into different
threads to be performed [DURAN et al. 2005]. Thus, the directive parallel for, available
in the GCC compiler [GNU COMPILER COLLECTION ], through the OpenMP library
[OPENMP ], was used to explore the parallelism present in the algorithms.

2. Experiments and Results
The experiments are performed on a computer with a CPU Intel Core i5 3317U processor,
1.7GHz, and 8GB RAM. The processor has two physical cores, which are associated with
Intel Hyperthreading, can run up to four independent threads.

Table 1 summarizes the runtime results of the algorithms developed in the C++
language with and without the use of high-performance processing techniques.

All experiments in Table 1 are performed 5 times. Thus, we have in the first row
the average execution time in seconds for each of the attack flow steps. The second line
contains the standard deviation of the executions. It is possible to see that the standard



Table 1. Runtime Results

deviation for all experiments is small, which indicates that the average is reliable. The last
line of Table 1 represents the the maximum percentage reduction in terms of execution
time, in relation to the Matlab implementation [MATHWORKS ] of the algorithms. We
can see that, the extract signature step has a time reduction of 78.53% when executing on 4
threads. This significant reduction is justified by the parallelism present in the algorithm.
Likewise, the other algorithm steps have also obtained significant reductions in terms of
execution time.

3. Conclusions
This paper proposes to recode the algorithms of [LELLIS et al. 2017] in a compiled lan-
guage C ++, with the use parallelization techniques. The purpose of this implementation
is to reduce the processing time of the attack flow steps, which are computationally costly
due to the huge amount of traces required to perform the attacks. From the results, can
be seen that all stages of the attack flow have their execution times reduced, reaching
a maximum reduction of 78.53%. This leads us to conclude that optimizations in the
preprocessing steps for DPA/DEMA attacks make attackers much more efficient, mak-
ing them able to carry out attacks much faster if they use high-performance processing
techniques. Thus, it becomes increasingly important to develop new countermeasures
preventing attacks even with preprocessing steps included in the flow.

References
CORON, J. and KIZHVATOV, I. (2009). An Efficient Method for Random Delay Gen-

eration in Embedded Software. Clavier C., Gaj K. (eds) Cryptographic Hardware and
Embedded Systems (CHES).

DURAN, A., GONZÀLEZ, M., and CORBALÁN, J. (2005). Automatic Thread Distri-
bution For Nested Parallelism In OpenMP. pages 121–130. 19th ACM International
Conference on Supercomputing (ICS).

GNU COMPILER COLLECTION. GCC online documentation – GNU Project – Free
Software Foundation. https://gcc.gnu.org/onlinedocs/. Online; accessed: 7 December
2019.

LELLIS, R. N. ., SOARES, R. I., and JUNIOR, A. A. S. (2017). An Energy-Based
Attack Flow for Temporal Misalignment Countermeasures on Cryptosystems. IEEE
International Symposium Circuits and Systems (ISCAS).

MATHWORKS. MATLAB Support Documentation.
https://www.mathworks.com/help/signal/ug/resampling.html. Online; accessed:
6 December 2019.

OPENMP. Specifications – OpenMP. https://www.openmp.org/specifications/. Online;
accessed: 8 December 2019.


