
A novel fog-cloud architecture to process serverless functions
with adaptive timeout

Gustavo André Setti Cassel1, Rodrigo da Rosa Righi1, Vinicius Facco Rodrigues1

1Applied Computing Graduate Program
University of Vale do Rio dos Sinos (UNISINOS) – São Leopoldo/RS

gustavoasc@edu.unisinos.br, {rrrighi,vfrodrigues}@unisinos.br

Abstract. This paper presents a novel architecture to handle serverless func-
tions with adaptive timeout, leveraging prediction to foresee how long the in-
coming request will take to finish based on historical data. This decision-making
process aims to ensure that no request will be discarded, while maximizing exe-
cution throughput and offloading requests from the fog to the cloud when needed.

1. Introduction
Serverless computing, also known as Function as a Service (FaaS), represents an emerging
technology where business logic is written as a composition of stateless functions. Devel-
opers write pieces of code that are separately deployed to a FaaS platform, which in turn is
responsible for spawning multiple instances of a given function according to the amount
of requests. This behavior helps to achieve the desired level of scalability. Therefore,
platforms are responsible for handling workloads in a parallel fashion [Chowhan 2018].

This kind of computing also imposes limitations, though, such as maximum time-
out for running functions [Chowhan 2018]. Requests that do not finish within the time
limit are abruptly finished by the platform. In fact, it is such a challenge to fit com-
plex functions into a FaaS platform, as requests can last a long time because of different
reasons: i) dependency on external entities taking longer than normal to perform op-
erations, ii) algorithms with high runtime complexity that last longer as input grows,
iii) legacy code that is difficult to optimize or refactor into different functions, iv) hard-
ware concurrency caused by functions performing intense I/O operations, among others
[Gorbenko et al. 2019, Rauback Aubin et al. 2021, Szwarcfiter and Markenzon 1994].

On the other hand, timeout is important because it prevents long requests from
monopolizing resources and reducing execution throughput. There is a need for a solu-
tion that handles both short and long-term requests with adaptive timeout, in a way that no
request is discarded even when finished because of timeout, while giving higher priority
to short requests in order to maximize throughput. We fill this gap by proposing a novel
architecture that integrates fog and cloud with the goal of ensuring execution of requests,
no matter how long they take to finish, as well as maximizing execution throughput, fi-
nancial savings, elasticity, reliability, and availability of resources.

2. Model
Figure 1 presents our architecture with its main components. Requests are received by a
load balancer and forwarded to a Request Manager instance (1), which in turn dispatches
incoming requests to the most appropriate environment according to prediction based on



weighted moving average. This component tries to foresee whether the incoming request
will take a short or a long time to finish, delegating the execution to a FaaS platform (2)
on the fog in case it is a short task, or to a container pool (3) also located on the fog in case
it is a medium or long task. In case execution is finished by timeout on the FaaS platform
(2), request is re-executed on the container pool (3), which does not have time limit.

Backing services

Caption

Short-term task
Medium-term task
Long-term task

CLOUDFOGEDGE

Historical 
duration

4

Tasks 
queue

5

FaaS Platform

2

…

Container 
pool

Load
balancer

Container pool

…

3
…

Replicas

Request Manager #1
Request Manager #2

Request Manager #3
Request Manager #N

1

6

Figure 1. Architecture details highlighting correlation between components.

After executing the request, its duration is stored in a database (4) located on the
fog, so the Request Manager can use this information to predict how long future exe-
cutions will take to finish. Recent durations have higher impact on predictions. Request
parameters and inputs should also be stored in the database, as duration may vary depend-
ing on the given input. In case local resources are overloaded and Internet connection is
unavailable, incoming requests are added to a queue (5) to be processed in a later moment.
This ensures that no request will be discarded. In case local resources become available
again, queued requests are executed locally. When Internet is back but local resources are
overloaded, requests are vertically offloaded to containers on the cloud (6) without time
limit, executing with unlimited processing capabilities provided by cloud vendors.

This architecture is subject to changes, as it is a first proposal. We are currently
building the first Request Manager prototype. Further steps include proposing algorithms
to improve distribution of requests between physically close fog nodes, building proto-
types to merge small requests into a single execution on the FaaS platform in order to
reduce cold start, and analyzing how to prevent starvation when giving higher priority to
short tasks. Finally, we will assess benefits of using FaaS platforms and container pools
on the cloud instead of using a single container pool, and compare results of building the
Request Manager itself as a microservice or as functions.

References
Chowhan, K. (2018). Hands-on serverless computing. Packt Publishing, 1st edition.

Gorbenko, A., Romanovsky, A., and Tarasyuk, O. (2019). Fault tolerant internet comput-
ing: Benchmarking and modelling trade-offs between availability, latency and consis-
tency. Journal of Network and Computer Applications, 146:102412.

Rauback Aubin, M., da Rosa Righi, R., Valiati, V. H., et al. Helastic: On combining
threshold-based and serverless elasticity approaches for optimizing the execution of
bioinformatics applications. Journal of Computational Science, 53:101407.

Szwarcfiter, J. L. and Markenzon, L. (1994). Estruturas de Dados e seus Algoritmos,
volume 2. Livros Técnicos e Cientı́ficos.


