
Enabling Dynamic Rescheduling in Kubernetes Environments
with Kubernetes Scheduling Extension (KSE)

Pedro Moritz de Carvalho Neto1, Márcio Castro1, Frank Siqueira1

1Universidade Federal de Santa Catarina (UFSC)
Florianópolis/SC

pedro.moritz@posgrad.ufsc.br, {marcio.castro,frank.siqueira}@ufsc.br

Abstract. An inefficient distribution of pods over nodes in a Kubernetes clus-
ter environment may lead to a suboptimal scenario called node unbalancing.
Problems related to scalability, reliability, availability, power consumption and
use of resources may arise from this scenario. This study proposes an extension
named Kubernetes Scheduling Extension (KSE) that allows the implementation
of different node balancing algorithms in Kubernetes.

1. Introduction
The use of virtualization technologies has shown to be a valuable resource for Cloud
Computing and has been intensely used in private and public clouds to improve resource
optimization and availability. In this context, the use of container-based virtualization al-
lows dynamic and scalable scenarios, more flexible than the standard Virtual Machine ap-
proach. Container technology has enabled a revolution in the Cloud Computing paradigm
by creating an abstraction layer that encapsulates and isolates the applications into the
cluster [Buyya et al. 2018]. In order to fully extract the versatility of containers, an or-
chestrator needs to be chosen. The orchestrator is a set of tools responsible for the pro-
visioning, deployment, networking, scaling, availability, and also for the life cycle man-
agement of containers. Kubernetes, developed by Google in 2008 and handed over to the
Cloud Native Computing Foundation in 2014, is one of the most popular among container
orchestrators [CNCF 2022]. Kubernetes provides containerized applications in atomic
structures called pods, which are executed on the nodes of the cluster. It has been offered
as a managed service by the leading public cloud providers but has also been widely used
on self-managed clusters.

2. Target Problem and Proposed Approach
The use of resources in a Kubernetes cluster is dynamic, changing in time according to
clients demands. It means that applications running in cluster nodes may consume dif-
ferent levels of resources with a high potential to create unbalanced scenarios, exhausting
and/or underusing compute resources during the pods’ life cycle. Kubernetes offers APIs
as a way to extend its default scheduler, known as kube-scheduler, enabling a great op-
portunity to solve problems related to unbalanced nodes. In this work, we propose an
extension to the default Kubernetes scheduler allowing the implementation of dynamic
rescheduling algorithms, taking into consideration different criteria in an integrated and
flexible way. This extension, named Kubernetes Scheduling Extension (KSE), is used to
implement a classical greedy strategy to mitigate some problems related to unbalanced
nodes in a Kubernetes environment.

3. Preliminary Experiments and Conclusions
A preliminary scenario was built to compare the outcomes of the default Kubernetes
scheduler (kube-scheduler) with a scheduler that periodically balances the nodes based



(a) kube-scheduler (b) KSE + GreedyLB

Figure 1. Kube-scheduler vs. KSE+GreedyLB (3 worker nodes and 6 pods).

on the amount of memory consumed by the pods. This node balancer, named GreedyLB,
was implemented using the proposed extension (KSE) and does the following steps peri-
odically: first, it sorts pods in decreasing order of memory consumption; then it iteratively
maps an unassigned pod that consumes the most memory to the node that has the least
memory consumption.

The experiments were executed on a Kubernetes cluster composed of 4 nodes
(master + 3 worker nodes) implemented with Minikube1. Two pods were initially de-
ployed on each worker node. A dummy application was implemented in order to simulate
real world memory-consuming applications and was deployed on each pod as a container-
ized application. The workload for the experiments was created with a load testing tool,
Grafana k62. In order to provide a node imbalance situation, the requests were assigned
to the pods using a normal distribution algorithm. Since kube-scheduler is not able to ac-
tively reschedule pods during their lifetime, the application will consume resources until
pod/node limits are reached. After pods/nodes collapse, it is not even possible to gather
metrics from Kubernetes agents, so the memory metrics readings fall to 0, as shown in
Figure 1a. The KSE, on the other hand, was able to evict and reschedule pods according
to the GreedyLB strategy (Figure 1b). The red dotted lines show when at least one pod
was evicted and rescheduled in order to achieve node balance. As a consequence, KSE
was also able to prevent node failure and application downtime.

As future work, we intend to carry out a broad range of experiments with dif-
ferent node balancing algorithms and workload distributions (considering both CPU and
memory) in order to evaluate the proposed approach.

References
Buyya, R., Srirama, S. N., Casale, G., Calheiros, R., Simmhan, Y., Varghese, B., Gelenbe,

E., Javadi, B., Vaquero, L. M., Netto, M. A., et al. (2018). A manifesto for future
generation cloud computing: Research directions for the next decade. ACM computing
surveys (CSUR), 51(5):1–38.

CNCF (2022). Cloud native computing foundation annual survey 2022 - the year cloud
native became the new normal.

1https://minikube.sigs.k8s.io/docs/
2https://k6.io/


