
Predicting the efficiency of job scheduler actions
Ana Eloina Nascimento Kraus1, Guilherme Diel1, Guilherme Piêgas Koslovski1

1Santa Catarina State University (UDESC) – Joinville – SC – Brazil

Abstract. The order in which tasks are executed in High Performance Comput-
ing (HPC) infrastructures is fundamental to the efficiency of the virtual envi-
ronment. This article covera a amachine learning- and polynomial regression-
aided effort of predicting and thus, drawing out a better understanding of, the
individual performances of various job scheduling algorithms.

1. Introduction
Establishing an order to the execution of important tasks in a High Performance Comput-
ing (HPC) system calls for the power of job scheduling algorithms to sort out long queues.
Specifically, job scheduling algorithms depend on the system administrator and on the
workload [Brucker 1999]. There is a multitude of algorithms commonly used by the spe-
cialized literature: Shortest Job First (SJF), First Come - First Serve (FCFS), Smallest
Area First (SAF), EASY Backfilling, F1, F2, F3 and F4, non-exhaustively. In the case
of F1 through F4, proposed by [Carastan-Santos and de Camargo 2017], the job schedul-
ing heuristics are statistically-backed nonlinear functions obtained through simulation of
scheduling of generalistic workloads with state-of-the-art ad-hoc algorithms.

Applying the correct strategy for job scheduling in a processing-intensive envi-
ronment such as a HPC datacenter is no trivial task and the concerns in this choice range
from environmental to financial. For example, choosing the most appropriate algorithm
based on the profile and patterns of the workflow being processed will bring considerable
energy usage benefits [Casagrande et al. 2022]. In this context and with such objective,
this work focused on using mathematical regression tools to obtain regression models
consistently capable of predicting the outcome of SJF-, FCFS-, SAF-, EASY-, F1-, F2-,
F3- and F4-scheduled workloads. For our study we focused on the score, in three ways for
each job: energy, average slowdown, and execution time. The score of each job represents
its contribution, or influence, in the workload’s general performance regarding a partic-
ular variable. By preprocessing and, finally, by working with polynomial regression, we
aimed to predict and study the overall performance of job schedulers. Fitting a line to the
data was the pivot point of this work.

This paper is organized in the following manner: a brief going over the data and
code work involved is presented in Section 2. Experimental results are discussed in Sec-
tion 3, and finally, Section 4 concludes the work.

2. Data, tools and implementation

2.1. Tasks and jobs
Distributed applications are scheduled, that is, lined up for execution task by task, in a
hierarchy devised by the chosen scheduling algorithm. In an HPC datacenter, hosts, that
is, the computational resources of a physical machine, take on jobs one at a time from
the scheduler. Scheduling jobs and tasks in HPC is to ensure that the machines run at



the edge of their capacities in speed and parallelism and the scheduling algorithm plays
a fundamental role in this requirement. Every task has key attributes as follows: time
of arrival, requested resources, requested time, execution time, and slowdown. The last
two, which make up great part of a task’s relevance in its workflow, can only be precisely
determined after scheduling and after proper execution [Brucker 1999].

In this research, the Standard Workload Format [Chapin et al. 1999] was used and
specifically the first phase of research consisted in simulating the scheduling of the SDSC-
SP2, KTH-SP2, SDSC-BLUE and HPC2N raw workloads. Each workload has between
28000 to 250000 jobs waiting do be scheduled. In parallel, the SimGrid simulation frame-
work [Casanova 2001] and its Python API for batch scheduling, pybatsim, were selected
for composing the prototype. The workloads were scheduled in the way of the 7 afore-
mentioned heuristics, seeking to simulate a HPC infrastructure of 32 and of 64 hosts.
Each server can host up to a single task, without preemption. Our focus was on the num-
bers of energy consumption of each task, average slowdown of the entire workload at the
moment of scheduling, and the estimated execution time of each task.

2.2. Score functions
After every combination of workload, platform and scheduling algorithm was calculated,
we started assigning scores to the jobs. The function used to assign a score for energy
consumption places the wattage value for each job before the average energy consumption
of the workload. The less energy it takes to schedule this job, the better a score for the
job. In turn, the function used to assign a slowdown score consists on evaluating the
turnaround time and the execution time of a job, putting them against each other to assert
the job’s contribution to the overall fluidity of the workload. The less a job slows down
the workflow, the better a score this job will get. Last but not least, the function used to
assign a score for the execution time simply considers the time taken to run the task or
job after it was scheduled.

2.3. Implementation
The forward step consisted in applying specifically polynomial regression, as this kind
of curve would be able to best interpolate the points in our dataset. Our intention was to
compose statistic models that would enable the generation or improvement of scheduling
policies. The preprocessing phase was composed of: reducing the operation overhead
while maintaining statistical relevance of the results, thus, the extraction of a pseudo-
randomized excerpt of the original dataset; then, conversion of the data into a treatable
format; after that, using each sample’s Local Outlier Factor to clean the dataset of statis-
tical outliers; and, finally, normalizing the data to a range of 0 to 1.

Our final dataset contained 15 rows of data for each job, including the submission
time, the waiting time and, most important to us, the execution time, the slowdown and
the energy consumption of each job. The energy consumption, for example, is listed in
watts, and does not vary with the scheduling algorithm used, seeing how the scheduling
algorithms do not interfere with the core of the job itself. An opposite example among
those listed would be the waiting time which does vary accordingly to the scheduling
algorithm’s priorities. On to the machine learning, the imperative train-test-splitting of
the dataset was carried out on a proportion of 70/30, respectively. With the X and Y
sets ready, we applied polynomial regression to the 30 percent set aside for testing of the



models, and then observed how successful their training had been with use of the RMSE
(Root Mean Squared Error, a classic prediction quality measurement variable; the smaller,
the better). In each of the three models, we made use of degree 4 polynomial regression,
which proved to be a successful approximation to the tendencies shown by our dataset
and the original tasks, without substantial additional load of operations. Interpolation by
linear, quadratic and cubic polynomials remain available for comparison and development
purposes. The data manipulation was handled by Pandas, the numerical operations were
orchestrated by NumPy, the plotting of curves for polynomial regression was done by
Matplotlib, the training of regression models was made by Sklearn, and then the pickle
lib was used to serialize these models.

3. Experimental results
The Cumulative Distribution Functions (CDF) of all three key attributes are displayed in
Figure 1. Each non-purple line represents the model with its respective degree polyno-
mial and with its RMSE. The x axis corresponds to the possible values for the predicted
variable mentioned in each subtitle, and the y axis is a percentage of values to lay in the
specific range that x entails. The plotted curve of the chosen model should compare ex-
actly to the plotted curve of the actual distribution of values for the dataset in question.
That is, the two plotted curves should overlap. Increasing deviation from the purple plot-
ted curve should mean the trained model has not correctly predicted values in the dataset
and is not reliable.

All of the trained models were able to predict values very closely to what the
dataset shows in the Average energy case. The percentage of samples that should fall
in the 0.0 to 0.2 range of metric value, to illustrate, is shown and indeed corresponds to
the most part (if not entirety) of the original dataset in this regard. The Execution time
CDF is in a similar situation, with an even smaller variation of the RMSE. And from what
Figure 1, (b) shows, the training of the four models in the chosen attributes to predict
the Average slowdown of a workload at the time of scheduling one specific task resulted
in few intersection points with the purple curve, which places the slowdown as the most
clearly distinguishing score from one workload to another.

4. Conclusions
The job scheduling problem has been thoroughly studied, described, and has seen many
optimized solutions ever since. Our research contributes to this by adding to the verifiable
sum of knowledge and stress testing of the main job scheduling algorithms in the litera-
ture, making a scientifically backed, more straightforward decision [Shyalika et al. 2020]
out of running a specific algorithm to schedule tasks in a real life system. With a combi-
nation of scheduling policies, job workloads and HPC DC infrastructures, we put together
a dataset that would allow us to analyze the workflow idiosyncrasies of each algorithm
and their behavior facing robust, heavy parallel workloads. All that we accomplished was
via simulation, machine learning and regression, having yielded three trained models able
to guide sysadmins into understanding the behavior of their scheduling policies.

Acknowledgment: This work was funded by the National Council for Scientific
and Technological Development (CNPq), the Santa Catarina State Research and Inno-
vation Support Foundation (FAPESC), Santa Catarina State University (UDESC), and
developed at Laboratory of Parallel and Distributed Processing (LabP2D).



0.0 0.2 0.4 0.6 0.8 1.0
Metric value

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Degree = 1 RMSE=0.017722
Degree = 2 RMSE=0.013678
Degree = 3 RMSE=0.011581
Degree = 4 RMSE=0.012039
Original 

(a) Execution time (CDF).

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Metric value

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Degree = 1 RMSE=0.084445
Degree = 2 RMSE=0.082743
Degree = 3 RMSE=0.083373
Degree = 4 RMSE=0.082497
Original 

(b) Average slowdown (CDF).

0.0 0.2 0.4 0.6 0.8 1.0
Metric value

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Degree = 1 RMSE=0.016158
Degree = 2 RMSE=0.013751
Degree = 3 RMSE=0.012265
Degree = 4 RMSE=0.012631
Original 

(c) Average energy (CDF).

Figure 1. Polynomial regression for scheduling parameters.

References
Brucker, P. (1999). Scheduling algorithms. Journal-Operational Research Society,

50:774–774.

Carastan-Santos, D. and de Camargo, R. Y. (2017). Obtaining Dynamic Scheduling Poli-
cies with Simulation and Machine Learning. In SC’17 -2 International Conference for
High Performance Computing, Networking, Storage and Analysis (Supercomputing),
Denver, United States.

Casagrande, L., Koslovski, G., Miers, C.C., P., M.A., and Gonzalez, N. (2022). Don’t
hurry be green: scheduling servers shutdown in grid computing with deep reinforce-
ment learning. In International Journal of Grid and Utility Computing. Inderscience
Publishers.

Casanova, H. (2001). Simgrid: A toolkit for the simulation of application scheduling. In
Proceedings First IEEE/ACM International Symposium on Cluster Computing and the
Grid, pages 430–437. IEEE.

Chapin, S. J., Cirne, W., Feitelson, D. G., Jones, J. P., Leutenegger, S. T., Schwiegelshohn,
U., Smith, W., and Talby, D. (1999). Benchmarks and standards for the evaluation of
parallel job schedulers. In Feitelson, D. G. and Rudolph, L., editors, Job Scheduling
Strategies for Parallel Processing, pages 67–90, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Shyalika, C., Silva, T., and Karunananda, A. (2020). Reinforcement learning in dynamic
task scheduling: A review. SN Computer Science, 1:306.


