
Profiling and Bottlenecks Analysis of an Agent-based Dengue
Fever Simulation Model

Pablo A.S. Hugen1, Guilherme Galante2, Rogério L. Rizzi1, Eduardo A.A. Cunha1

1 Colegiado de Ciência da Computacao
Universidade Estadual do Oeste do Paraná (UNIOESTE)

85819-110 – Cascavel – PR – Brazil

{pablo.hugen,guilherme.galante,rogerio.rizzi,eduardo.argou}@unioeste.br

Abstract. Agent-Based Model simulations plays a critical role in computational
epidemiology, usually employing GPU aceleration to account for large scale
scenarios. In this work, we profile and analyze an agent based model for dengue
fever disease spreading simulation as part of a bachelor thesis work, to find
bottlenecks and performance issues. We have discovered a bottleneck in two of
the model kernels, and inefficient host-to-device memory transfers. The use of a
unified memory architecture as also running more kernels in parallel using ISO
C++17 Parallelism are proposed as future solutions to these challenges.

1. Introduction
The spread of infectious diseases, notably exemplified by the SARS-Cov-2 and H1N1
outbreaks, has been significantly accelerated by global interconnectivity, highlighting
the critical role of computational technologies in public health management. Thus,
mathematical models and simulations, as highlighted by [Rachah and Silva 2024],
have proven indispensable for formulating effective health strategies. Moreover, the
necessity for simulating complex epidemiological scenarios and advancements in High
Performance Computing have propelled the use of Agent-Based Models (ABMs) in
computational epidemiology simulations, as discussed by [Elsheikh 2024]. These
models offer insights into epidemic dynamics by simulating disease progression on an
individual level, emphasizing the spatial and temporal interaction between agents and
their environment [Cunha et al. 2022]. However, the implementation of ABMs is not
without challenges: They require significant computational effort, both in terms of
memory storage and processing time, which becomes a limiting factor as the number
of individuals or spatial resolution increases [Rosenstrom et al. 2024].

As a result, Graphics Processing Units (GPUs) acceleration have been
used to deal with the agent scale problem, as shown by [Kitson et al. 2024,
Thomopoulos and Tsichlas 2024], usually employng the CUDA programming model.
Despite this, the model proposed by [Cunha et al. 2022], even though implemented using
CUDA, still suffers from the scale problem, leading to impractical simulation times in
real-world scenarios. Furthermore, recent studies have demonstrated the effectiveness
of ISO C++ parallel algorithms in enhancing computational performance across a range
of scenarios, using GPUs and other accelerators to offer a standardized, cross-platform
approach to parallelism [Brown et al. 2019]. In view of this, to address these challenges,
the authors are currently working on implementing a model based on the work of
[Cunha et al. 2022] utilizing the ISO C++ parallel algorithms for potential performance



improvements. Therefore, the primary objective of the present work is to profile the
Cunha model to identify and analyze bottlenecks, aiming to aid in significantly
reducing simulation times for real world scenarios.

2. Methodology

In the simulator, each individual agent is characterized by attributes including age,
location, and health status, within a spatial environment modeled as a mobility graph,
as shown by Figure 1. Agents interact within the surroundings through a series of
time steps or cycles, enabling movement within the environment, contact with other
agents, being prone to environmental forces and other control measures, and also
transitions in health status. These status changes adhere to the SEIRS model (as
illustrated in Figure 2), cycling agents through predetermined health states: Susceptible,
Exposed, Infected, and Recovered; thus dynamically simulating the spread and impact
of diseases over time. This conceptual disease spreading model is based on the work by
[Cunha et al. 2022], incorporating the Monte Carlo method to account for the stochastic
nature of disease spreading, running multiple simulations with random parameters within
a predetermined range. Specifically, the model is adapted for Dengue fever, incorporating
both human and mosquito agents in the simulation. The [Cunha et al. 2022] original
model implementation is available online at Github.

S E

IR

β

σ

γ

δ

Figure 1. SEIRS Model

(x,y)

(x’,y’)

Figure 2. Mobility Graph

The new implementation leverages the ISO C++17 Parallel Algorithms
specification, facilitating portable parallel programming with the Standard Template
Library (STL). This is achieved through the Nvidia HPC SDK, which supports full C++17
on CPUs and allows offloading of parallel algorithms to Nvidia GPUs, thereby enabling
GPU programming without the need for directives, pragmas, or annotations. Such an
approach ensures that programs utilizing C++17 parallel algorithms are easily portable
across most platforms. The full implementation can be found at this repository.

For the execution and experimental setup of the simulation, a computer equipped
with an Intel Core i7-11390H processor, featuring 4 cores and 16 threads, was used. This
system have 16GB of RAM and an NVIDIA GeForce MX450 graphics card with 2GB
GDDR6 memory. The simulation scenario consisted of 365 cycles, designed to emulate
the dynamics within a city block of Cascavel/PR, providing a comprehensive view of the
environmental interactions over an annual period. To analyze the performance of CUDA
kernels within the simulation, the Nvidia Visual Profiler (nvvp) tool was employed,
offering detailed insights into the execution efficiency and potential bottlenecks within
the GPU-accelerated processes.

https://github.com/HpcResearchLaboratory/simulator/tree/main
https://github.com/HpcResearchLaboratory/simulator/tree/refactor/code


3. Results
First, the utilization of the Nvidia Visual Profiler tool analysed the simulation kernels
performance. The profiling data, as summarized in Table 1, revealed the execution time,
frequency of invocations, and the relative importance of each kernel with an overal effect
greater than 1% in the context of the entire simulation. The total time of the simulation
was roughly 1139.54s, with 811.19ms of profiling overhead.

Table 1. Execution time and Invocations of kernels with Importance > 1%

Kernel Total Execution Time (s) Invocations Importance (%)
MosquitosMovement 419.7169 4380 40.2

MosquitosContact 323.8985 4380 31
HumansContact 122.0778 4380 11.7

HumansMovement 27.2122 1095 2.6
Generation 20.16748 361 1.9

MosquitosControl 14.4168 365 1.4

Notably, the MosquitosMovement and MosquitosContact kernels dominated the
computational effort, accounting for over 71% of the total importance, highlighting
the implementation complexity of the mosquitoes dynamics, and displaying them
as the primary bottlenecks within the simulation. Next, the HumansContact and
HumansMovement kernels, while less computationally intensive, still played a significant
role in the simulation time. Finally, the Generation and MosquitosControl kernels, though
having lower importance percentages, can also be considered as optimization targets.

Following, the memory transfers patterns between the CPU and GPU were
examined. It was identified host-to-device transfers at 7.11ms for 55 transfers, with
38.63MB at a throughput of 5.429 GB/s, and device-to-host transfers at 35.97ms for
14,747 invocations, transferring 102.402MB at 2.847 GB/s. With those data, the profiler
was able to identify some key points in the memory performance of the simulator, as
shown in the Figure 3.

Figure 3. Data movement profiler analysis.

Particularly, as presented in the “Inefficient Memcpy size” field, the profiling tool
revealed a significant use of small and inefficient device-to-host memory copies, primarily
due to frequent state transfers for I/O operations. To mitigate this, strategies such as
deferring simulation state presentation until completion or employing CUDA Unified
Memory technology are suggested. Additionally, it can be seen in the field “Low Memcpy
Throughput” that the analysis identified issues with low memory throughput, detecting



transfers at only 56.032 MB/s in average. Also, “Low Memcpy Overlap” at 0% display
a lack of parallel transfers, which could be addressed by implementing asynchronous
memory transfers between the host and GPU. Also, other critical observations are
the absence of concurrent kernel executions (“Low Kernel Concurrency” value at 0%)
and no execution/transfer overlapping, highlighted on the section “Low Memcpy/Kernel
Overlap”. Those informations presents a complex challenge that necessitates a redesign
of the simulator architecture, an aspect currently under development.

4. Conclusion and future work
In conclusion, we found that the main bottlenecks of the [Cunha et al. 2022] model were
the MosquitosMovement and MosquitosContact kernels, which accounted for over 71% of
the total importance. The memory transfers patterns between the CPU and GPU revealed
a lot inefficient device-to-host memory copies, primarily due to frequent state transfers
for I/O operations. Finally, the absence of concurrent kernel execution was identified as a
critical observation, posing a complex challenge that implies the necessity of a redesign
of the simulator architecture to enhance overall performance.

Thus, future work is being directed towards a fundamental redesign of the
simulator architecture to optimize data access patterns and reduce complexity in
MosquitosMovement and MosquitosContact operations. This redesign aims to enable
concurrent kernel execution through the implementation using ISO C++17 Parallel STL
algorithms. Concurrently, efforts are underway to refactor state I/O operations, adopting
unified memory architecture as a first class approach of the simulator.

References
Brown, G., Reyes, R., and Wong, M. (2019). Towards heterogeneous and distributed

computing in c++. In Proceedings of the International Workshop on OpenCL, pages
1–5.

Cunha, E. A. A. et al. (2022). Aperfeiçoamento e ajuste paramétrico de modelo baseado
em agentes para simulação da transmissão da dengue. Programa de pós-graduação em
ciência da computaç ão, Universidade Estadual do Oeste do Paraná, Cascavel-PR.

Elsheikh, A. (2024). Promising and worth-to-try future directions for advancing state-of-
the-art surrogates methods of agent-based models in social and health computational
sciences. arXiv preprint arXiv:2403.04417.

Kitson, J., Costello, I., Chen, J., Jiménez, D., Hoops, S., Mortveit, H., Meneses, E.,
Yeom, J.-S., Marathe, M. V., and Bhatele, A. (2024). A large-scale epidemic simulation
framework for realistic social contact networks. arXiv preprint arXiv:2401.08124.

Rachah, A. and Silva, T. L. (2024). An agent-based model for controlling pandemic
infectious diseases transmission dynamics with the use of face masks. In AIP
Conference Proceedings, volume 3034. AIP Publishing.

Rosenstrom, E. T., Ivy, J. S., Mayorga, M. E., and Swann, J. L. (2024). Covsim: A
stochastic agent-based covid-19 simulation model for north carolina. Epidemics, page
100752.

Thomopoulos, V. and Tsichlas, K. (2024). An agent-based model for disease epidemics
in greece. Information, 15(3):150.


	Introduction
	Methodology
	Results
	Conclusion and future work

