
Multiparticionamento Flexı́vel em Processadores Multicore
Michel B. Cordeiro1, Guilherme S. Bluhm1, Wagner M. Nunan Zola1

1Departamento de Informática – Universidade Federal do Paraná (UFPR)

michel.brasil.c@gmail.com, gsbluhm@inf.ufpr.br, wagner@inf.ufpr.br

Resumo. Este trabalho propõe um algoritmo paralelo eficiente de multipartici-
onamento de dados em processadores multicore. O algoritmo permite definição
dos limites de cada faixa de dados, possibilitando particionamentos variáveis,
além de apresentar boa escalabilidade.

1. Introdução
O particionamento pode ser considerado um mecanismo de decomposição. Tipicamente
consiste em dividir um conjunto de dados, em subconjuntos ou partições que podem
ser processadas em paralelo. O multiparticionamento tem como objetivo reorganizar
os dados de entrada em “bins” (ou “buckets”), contı́guos na memória, utilizando uma
função que categoriza os elementos em suas respectivas partições. Um subproblema do
multiparticionamento ocorre quando a função de categorização utiliza um vetor de fai-
xas para organizar os elementos de entrada. Assim, dado um conjunto de elementos
S = {x0, x1, . . . , xn} e um conjunto de faixas P = {p0, p1, . . . , pk}, o objetivo é parti-
cionar S em k subconjuntos disjuntos B0, B1, . . . , Bk−1, tais que Bi = {x ∈ S | pi ≤
x < pi+1}, para i ∈ {0, 1, . . . , k− 1}, sendo pk = ∞. O multiparticionamento é utilizado
para balancear cargas de trabalho em muitas aplicações paralelas, como no algoritmo
Barnes-hut e em algoritmos de ordenação. No entanto, apesar de sua relevância, o multi-
particionamento recebeu pouca atenção na literatura, se considerado como uma primitiva
paralela independente. Diante disso, este artigo propõe uma implementação eficiente de
multiparticionamento paralelo utilizando pthreads.

2. Descrição do Algoritmo
Para categorizar os elementos de entrada de forma eficiente, é essencial utilizar um
método de busca otimizado para determinar a faixa correspondente a um determinado
elemento. Considerando que o conjunto de faixas P é representado por um vetor orde-
nado, a busca binária é a abordagem mais eficiente para essa tarefa. Estudos conduzidos
por [Khuong and Morin 2017] exploraram diferentes estratégias para otimizar a busca
binária em C++. Com base em testes e ajustes, os autores concluı́ram que, para valores
pequenos de n (até 221, segundo o estudo), a melhor abordagem consiste na combinação
da busca binária com técnicas de movimentos condicionais que visa minimizar erros de
predição de ramificação, e com pré-busca (prefetching) para reduzir a latência de cache.
Como o conjunto P tende a ser consideravelmente menor que o vetor a ser particionado,
o algoritmo proposto neste estudo adota a busca binária otimizada desenvolvida por Khu-
ong et al. O algoritmo proposto é estruturado em três etapas. Inicialmente, o vetor de
entrada é distribuı́do entre as threads, que identificam a faixa correspondente a cada ele-
mento, construindo um histograma local por thread e um histograma global para toda a
entrada. Em seguida, aplica-se a operação de scan exclusivo aos histogramas, permitindo
determinar a posição exata onde os elementos de cada faixa devem ser inseridos. Por

fim, as threads percorrem novamente o vetor de entrada e inserem os elementos em suas
respectivas partições no vetor de saı́da. Além disso, o algoritmo retorna a posição inicial
de cada faixa no vetor de saı́da, determinada pelo scan exclusivo do histograma global.

3. Resultados e Discussões
Para avaliar a eficiência do algoritmo proposto, foram gerados conjuntos de dados com
tamanhos de 1, 2, 4, 8, 16 e 32 milhões de elementos do tipo long long int, seguindo uma
distribuição uniforme. Os experimentos foram conduzidos com o objetivo de analisar a
escalabilidade do algoritmo, variando três atributos: (i) número de threads, que variou de
1 a 32, utilizando 32 milhões de elementos particionados em 16 mil faixas; (ii) quantidade
de elementos, que varia de 1 a 32 milhões, particionados em 16 mil faixas; e processados
com 32 threads; e (iii) número de faixas, variando de 256 a 16 mil, com 32 milhões de ele-
mentos e 32 threads. Os testes foram realizados 100 vezes e a vazão média, expressa em
milhões de elementos particionados por segundo (MEPPS), foi reportada. Também foram
calculados intervalos de confiança de 95%, mas não foram observadas variações maiores
do que 1% em relação à média e, por isso, esses valores não foram reportados. O ambi-
ente de execução consiste em um processador Intel Xeon Silver 4314 @ 2.40GHz, com 16
núcleos (32 hyperthreads), utilizando o sistema operacional Linux Ubuntu 20.04.3 LTS.

Vazão em Milhões de Elementos Particionados Por Segundo (MEPPS)

1 2 4 8 16 32
0

50

100

150

200

250

300

350

400

0

5

10

15

20

30.7

60.8

120.8

230.7

343.3
356.0

1.00
1.98

3.93

7.52

11.18 11.60

(i)

vazao média
(MEPPS)

Aceleraçao

Quantidade de threads

V
az

a
o

 m
é

di
a

 (
M

E
P

P
S

)

A
ce

le
ra

çã
o

1M 2M 4M 8M 16M 32M
0

100

200

300

400

500

600

700

800

0

5

10

15

20

25

30

35

40

29.8 32.1 32.0 32.0 31.6 30.7

270.2

359.2
380.2 363.3 355.5 355.8

9.08
11.21 11.87 11.35 11.25 11.58

(ii)

Sequencial
Paralelo (32 threads)
Aceleraçao

Quantidade de elementos

va
za

o
 m

é
di

a
 (

M
E

P
P

S
)

A
ce

le
ra

çã
o

256 512 1024 2048 4096 8000 16000
0

100

200

300

400

500

600

700

800

900

0

4

8

12

16

20

24

28

32

36

66.4 60.1 52.9 48.0 43.0 35.7 30.7

562.1 566.7
536.9

511.4
475.0

434.1

356.2

8.47 9.43 10.15 10.66
11.04 12.15

11.61

(iii)
Sequencial
Paralelo (32 threads)
Aceleraçao

Quantidade de faixas

va
za

o
 m

é
di

a
 (

M
E

P
P

S
)

A
ce

le
ra

çã
o

Figura 1. Resultado dos experimentos (i) com 32 milhões de elementos, variando
a quantidade de threads, (ii) variando a quantidade de elementos e (iii) a quanti-
dade de faixas. Os experimentos (ii) e (iii) foram executados com 32 threads

Os resultados dos experimentos são apresentados na Figura 1. No processador
utilizado, o algoritmo demonstra uma boa escalabilidade em relação ao número de th-
reads, alcançando um speedup de 7,52 para 8 threads em comparação com a execução
sequencial. No entanto, o ganho de desempenho tende a se estabilizar com o aumento do
número de threads. Além disso, a quantidade de faixas impacta negativamente a vazão,
como esperado, uma vez que um maior número de faixas implica buscas mais extensas
para categorizar os elementos, ou seja, para cada elemento de entrada mais trabalho é
adicionado. Dessa forma, esse impacto também ocorre na versão sequencial. Assim,
podemos observar boa aceleração, mesmo com aumento de faixas.
Agradecimentos
Parcialmente suportado pelo Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico (CNPq), processo 407644/2021-0, bem
como pela Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES) - Programa de Excelência Acadêmica (PROEX).

Referências
Khuong, P.-V. and Morin, P. (2017). Array layouts for comparison-based searching. ACM

J. Exp. Algorithmics, 22.

