Multiparticionamento Flexivel em Processadores Multicore
Michel B. Cordeiro', Guilherme S. Bluhm', Wagner M. Nunan Zola'

'Departamento de Informatica — Universidade Federal do Parand (UFPR)

michel.brasil.c@gmail.com, gsbluhm@inf.ufpr.br, wagner@inf.ufpr.br

Resumo. Este trabalho propoe um algoritmo paralelo eficiente de multipartici-
onamento de dados em processadores multicore. O algoritmo permite defini¢do
dos limites de cada faixa de dados, possibilitando particionamentos varidveis,
além de apresentar boa escalabilidade.

1. Introducao

O particionamento pode ser considerado um mecanismo de decomposicdo. Tipicamente
consiste em dividir um conjunto de dados, em subconjuntos ou particdes que podem
ser processadas em paralelo. O multiparticionamento tem como objetivo reorganizar
os dados de entrada em “bins” (ou “buckets”), contiguos na memoria, utilizando uma
funcdo que categoriza os elementos em suas respectivas particoes. Um subproblema do
multiparticionamento ocorre quando a funcdo de categorizacao utiliza um vetor de fai-
xas para organizar os elementos de entrada. Assim, dado um conjunto de elementos

S = {xg,1,...,2,} e um conjunto de faixas P = {pg, p1,...,Px}> O Objetivo é parti-
cionar S em k subconjuntos disjuntos By, By, ..., By_1, taisque B; = {x € S | p; <
r < piy1},parai € {0,1,..., k— 1}, sendo p;, = co. O multiparticionamento ¢ utilizado

para balancear cargas de trabalho em muitas aplicacOes paralelas, como no algoritmo
Barnes-hut e em algoritmos de ordenagdo. No entanto, apesar de sua relevancia, o multi-
particionamento recebeu pouca atencao na literatura, se considerado como uma primitiva
paralela independente. Diante disso, este artigo propde uma implementagao eficiente de
multiparticionamento paralelo utilizando pthreads.

2. Descricao do Algoritmo

Para categorizar os elementos de entrada de forma eficiente, € essencial utilizar um
método de busca otimizado para determinar a faixa correspondente a um determinado
elemento. Considerando que o conjunto de faixas P ¢é representado por um vetor orde-
nado, a busca bindria € a abordagem mais eficiente para essa tarefa. Estudos conduzidos
por [Khuong and Morin 2017] exploraram diferentes estratégias para otimizar a busca
bindria em C++. Com base em testes e ajustes, os autores concluiram que, para valores
pequenos de n (até 22!, segundo o estudo), a melhor abordagem consiste na combinagio
da busca bindria com técnicas de movimentos condicionais que visa minimizar erros de
predicao de ramificagdo, e com pré-busca (prefetching) para reduzir a laténcia de cache.
Como o conjunto P tende a ser consideravelmente menor que o vetor a ser particionado,
o algoritmo proposto neste estudo adota a busca binaria otimizada desenvolvida por Khu-
ong et al. O algoritmo proposto € estruturado em trés etapas. Inicialmente, o vetor de
entrada € distribuido entre as threads, que identificam a faixa correspondente a cada ele-
mento, construindo um histograma local por thread e um histograma global para toda a
entrada. Em seguida, aplica-se a operagdo de scan exclusivo aos histogramas, permitindo
determinar a posi¢do exata onde os elementos de cada faixa devem ser inseridos. Por

fim, as threads percorrem novamente o vetor de entrada e inserem os elementos em suas
respectivas particoes no vetor de saida. Além disso, o algoritmo retorna a posi¢ao inicial
de cada faixa no vetor de saida, determinada pelo scan exclusivo do histograma global.

3. Resultados e Discussoes

Para avaliar a eficiéncia do algoritmo proposto, foram gerados conjuntos de dados com
tamanhos de 1, 2, 4, 8, 16 e 32 milhdes de elementos do tipo long long int, seguindo uma
distribui¢do uniforme. Os experimentos foram conduzidos com o objetivo de analisar a
escalabilidade do algoritmo, variando trés atributos: (i) nimero de threads, que variou de
1 a 32, utilizando 32 milhdes de elementos particionados em 16 mil faixas; (i1) quantidade
de elementos, que varia de 1 a 32 milhdes, particionados em 16 mil faixas; e processados
com 32 threads; e (iii) nimero de faixas, variando de 256 a 16 mil, com 32 milhdes de ele-
mentos e 32 threads. Os testes foram realizados 100 vezes e a vazdo média, expressa em
milhdes de elementos particionados por segundo (MEPPS), foi reportada. Também foram
calculados intervalos de confianca de 95%, mas nao foram observadas variacdes maiores
do que 1% em relacdo a média e, por isso, esses valores nao foram reportados. O ambi-
ente de execucao consiste em um processador Intel Xeon Silver 4314 @ 2.40GHz, com 16
nucleos (32 hyperthreads), utilizando o sistema operacional Linux Ubuntu 20.04.3 LTS.

Vazéo em Milhdes de Elementos Particionados Por Segundo (MEPPS)

(i) (ii) (iii)

800 40 900 . 36

400 == vazao média 356_020 =¥ Sequencial =¥ Sequencial
350 (MEPPS) 3433 700 == Paralelo (32 threads) 35 800 =—m= Paralelo (32 threads) 32
—4— Aceleracao —— Aceleragao 700 —* Aceleragao 28

w
o
=]
@
=]
(=]

15 30
g 600 562.1 566.7 536.9 24

Y 500

11.60

N
a
=]
o
=]
(=]

25

3592 3802 3633 3555 385820

V/I\._._-] 3 o
1121 1187 1135 1125 1158 2 300 o 1015 1056 11.04 12 12
W_‘_._‘ 10 N 8.47 Y- 11.61

> 200 8

=
S)

Aceleracdo

s
< 400

Aceleragdo
Aceleragao

w
=]
(=]

150 120.

Vazao média (MEPPS)
IS
<)

vazao média (MEPPS)
8
)

100 5 200
50307 100 365 321 320 320 316 307° 100°:4 601 529 480 430 357 304
¥ ¥ — ey v v ¥ ¥ ¥ - g
o0 0 0 0 0 0
1 2 4 8 16 32 M 2M 4aM 8M 16M 32M 256 512 1024 2048 4096 8000 16000
Quantidade de threads Quantidade de elementos Quantidade de faixas

Figura 1. Resultado dos experimentos (i) com 32 milhoes de elementos, variando
a quantidade de threads, (ii) variando a quantidade de elementos e (iii) a quanti-

dade de faixas. Os experimentos (ii) e (iii) foram executados com 32 threads

Os resultados dos experimentos sdo apresentados na Figura 1. No processador
utilizado, o algoritmo demonstra uma boa escalabilidade em relacdo ao ntimero de th-
reads, alcancando um speedup de 7,52 para 8 threads em comparagdo com a execucao
sequencial. No entanto, o ganho de desempenho tende a se estabilizar com o aumento do
numero de threads. Além disso, a quantidade de faixas impacta negativamente a vazao,
como esperado, uma vez que um maior nimero de faixas implica buscas mais extensas
para categorizar os elementos, ou seja, para cada elemento de entrada mais trabalho é
adicionado. Dessa forma, esse impacto também ocorre na versdao sequencial. Assim,
podemos observar boa aceleracdo, mesmo com aumento de faixas.

Agradecimentos

Parcialmente suportado pelo Conselho Nacional de Desenvolvimento Cientifico e Tecnolégico (CNPq), processo 407644/2021-0, bem
como pela Coordenacdo de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) - Programa de Exceléncia Académica (PROEX).
Referéncias

Khuong, P.-V. and Morin, P. (2017). Array layouts for comparison-based searching. ACM
J. Exp. Algorithmics, 22.

