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Resumo. As aplicações stencil são comuns na solução de problemas relaciona-
dos com as equações diferenciais parciais, por exemplo nas simulações de
geofı́sica. Consistem em um padrão que vai calculando a mesma operação em
múltiples dados. Este trabalho apresenta um modelo para a predição do tempo
de execução das aplicações stencils, baseado em Machine Learning. Os resul-
tados mostram que é possı́vel treinar o modelo e conseguir uma alta precisão.

1. Introduction
The performance of HPC applications depends on many factors: architecture, code
optimization, compiler and runtime frameworks. For example, [Dupros et al. 2015,
de la Cruz and Araya-Polo 2015] presents cache-efficient algorithms for stencil compu-
tations on HPC architectures. On the other hand, Machine Learning (ML) is a compre-
hensive methodology for optimization. Recently, ML algorithms have been used on HPC
systems. In [Martı́nez et al. 2017], the authors introduce a ML model to predict the per-
formance of stencil computations on multicore architectures.

Stencil computations consist in using the neighboring points to evaluate a current
point. The algorithm then moves to the next point applying the same computation pattern
until the entire domain has been traversed. In this works, we study three well-known
stencil kernels: the 7-point Jacobi for heat transfer and the seismic wave propagation
explained in [Martı́nez et al. 2017], and the isotropic acoustic wave propagation explained
in [Martı́nez et al. 2018]

2. Machine Learning Methodology
2.1. Testbed
We used Intel Xeon Phi (Knights Landing) to carry out the experiments. The detailed
configuration are shown in Table 1. Based on this platform, Table 2 details all the con-
figurations available. As it can be noted, a brute force approach would be unfeasible due
to the large number of simulations required, because some of these executions can take
many hours (or days).

2.2. Prediction Model
The proposed ML model is based on Support Vector Machines (SVM) and was built on
top of three consecutive layers. The input layer contains the configuration values from the
input vector presented in table 2. The hidden layer contains two SVMs that take values
from the input vector to simulate the hardware counters, measured by PAPI library: L2
total cache misses and total cycles. Finally, the output layer contains one SVM to obtain
the execution time value. SVMs were implemented in R language.



Table 1. Testbed
Processor Intel Xeon Phi 7520
Clock(GHz) 1.40
Cores 68
Sockets 1
Threads 272
L2 cache size (MB) 32

Table 2. Configuration Domain
Optimization Parameters Total configurations
Number of threads 1 272
Scheduling policy 1 3
Chunk size 1 512
Total 3 417,792

2.3. Training and Validation

We created a training set by randomly selecting a subset from the configuration set pre-
sented in Table 2. Then, for each experiment we measured the hardware counters and
execution time. A random testing set was used to calculate new execution time values.
Table 3 presents the total number of experiments that were performed to obtain the train-
ing and validation sets. After that, we measured the accuracy of the model using the
coefficient of determination (R-square). R-square ranges from zero to one, equal to one
indicates a perfect fit of data prediction. As it can be noted in Table 4, the R-square is
close to 99%, then we get a highly accurate regression.

Table 3. Experiment sets
Jacobi Seismic Isotropic

Training set 103 163 159
Testing set 929 1469 1436
Total 1032 1632 1595

Table 4. Prediction Accuracy
R-square

Jacobi 0.9949
Seismic 0.9993
Isotropic 0.9610

3. Conclusion
In this paper, we introduced a predictive performance modeling strategy for stencil appli-
cations on accelerator architectures. We showed that performance can be predicted with
a high accuracy (96-99%). Our model is not restricted to accelerators platforms and can
also be implemented into architectures with the available hardware counters to obtain the
cache-related measurements. Future work is oriented to unsupervised algorithms to avoid
training stage.
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