
Performance Optimization of Persistent Memory Systems
Through Phase-Based Transactional Memory

Rafael Murari1, João Paulo Carvalho2, Guido Araujo2, Alexandro Baldassin1

1Department of Statistics, Applied Mathematics and Computing –
São Paulo State University (UNESP) – Rio Claro, Brazil

2Institute of Computing – University of Campinas (UNICAMP) –
Campinas, Brazil

{rafael.murari,alexandro.baldassin}@unesp.br

{joao.carvalho,guido}@ic.unicamp.br

Abstract. The emerging persistent memory technologies (PM) are aimed to
eliminate the gap between main memory and storage. Nevertheless, its adop-
tion requires measures to guarantee consistency, since crash failures might ren-
der the program in an unrecoverable state. In this context, the usage of durable
transactions is one of the main investigated approaches to ease the adoption
of PM. However, today’s implementations are based exclusively on software
(SW) or hardware (HW), which might degrade system performance. This paper
presents NV-PhTM, a transactional system for PM that delivers the best out of
both HW and SW transactions by dynamically changing the execution according
to the application’s characteristics.

Resumo. As emergentes tecnologias de memória persistente (PM) visam elimi-
nar a lacuna existente entre a memória principal e a secundária. No entanto,
sua adoção requer medidas para garantia de consistência, visto que possı́veis
falhas de sistema podem resultar em um estado irrecuperável. Neste contexto, o
uso de transações duráveis é uma das abordagens mais investigadas para faci-
litar a adoção da PM. Todavia, as implementações atuais baseiam-se exclusiva-
mente em software (SW) ou hardware (HW), podendo resultar em degradação de
desempenho. Este trabalho apresenta a solução NV-PhTM, um sistema transa-
cional baseado em fases capaz de alterar dinamicamente o modo de execução,
SW ou HW, mediante as caracterı́sticas apresentadas pelas aplicações.

1. Introduction
The last few years have witnessed a disruption in the traditional memory hierarchy due to
the appearance of novel byte-addressable non-volatile memory technologies, commonly
referenced as NVM or PM [Mutlu and Subramanian 2014]. These technologies, char-
acterized by high density and fast access time, are able to expose persistent storage to
applications through standard memory instructions (load and store), avoiding the high
overhead involved in intermediate software layers, like drivers and file system. Nonethe-
less, the adoption of PM is not straightforward, as crash failures might persistently corrupt
whole memory regions. In order to address this challenge, the usage of durable transac-
tions has been proposed due to its strong semantics and ease-of-use idiom (popularized
by database systems) [Harris et al. 2010].



Early works focused on providing software durable transactions (STM), adding
a logging scheme to track all persistent writes. However, this leads to a poor perfor-
mance when executing short-lived transactions. Therefore, recent works have proposed
using hardware transactional support (HTM), available in current Intel and IBM micro-
processors, as a way of reducing the high overhead introduced by software transactional
systems. Despite its good performance, contemporary HTM systems only provide a best-
effort implementation, relying on a fallback mechanism, usually the acquirement of a
Single Global Lock (SGL), to guarantee system progress.

In this context, this paper presents NV-PhTM: a durable phase-based transac-
tional system that executes transactions in phases (HW or SW) selected according to
the application’s characteristics. Contrary to current systems that resort to serialization,
NV-PhTM can smoothly transition the execution to durable software transactions, main-
taining a high degree of parallelism. Experimental results with the STAMP benchmark
[Minh et al. 2008] show the feasibility of NV-PhTM in detecting and following the best
execution mode. This article is divided as follows. Section 2 describes NV-PhTM design.
Section 3 presents the experimental evaluation of the new system, comparing it against
other state-of-the-art approaches. Finally, Section 4 presents the conclusion.

2. NV-PhTM

Aimed to identify the best execution mode for the distinct transactional specificities,
the Non-Volatile Phased Transactional Memory (NV-PhTM) uses the feedback informa-
tion, from transactions, together with a set of heuristics to guide the transition between
distinct transactional implementations (HW and SW). NV-PhTM is built upon PhTM*
[Carvalho et al. 2018], a phase-based transactional system developed for volatile mem-
ory systems, however certain extensions were proposed: (i) the addition of the durability
concept, fulfilling the ACID (Atomicity, Consistency, Isolation and Durability) properties;
(ii) new strategies elaborated to guarantee persistency between phase transitions; (iii) de-
sign of new transition heuristics that consider the nature of durability strategies and the
characteristics of PM.

The architecture designed for NV-PhTM aims to maintain the modularity pro-
posed by PhTM*, which allows the replacement of HW and SW modules by other im-
plementations that provide the same set of operations defined in each transactional API.
However, the limitations presented by HTM solutions for PM (e.g., hardware extensions)
impeded the hardware modularity, being entrusted to NV-HTM [Castro et al. 2018] the
provision of this mode. The modularity of NV-PhTM is restricted to the SW mode, en-
abling the evaluation of different implementations in order to obtain better performance.
The effectiveness of modularization lies in the independence of execution between modes.
In this context, the architecture was designed considering the following aspects: (i) HW
and SW modes use the same persistent memory regions (log and application state); (ii)
before the end of the transition, the system runs a consolidation routine in order to persist
the last consistent state produced by current mode; (iii) the effectiveness of the proposed
heuristics, aiming at reduce the number of transitions performed by the system.

Persistent memory regions allocated for application state and logs are shared be-
tween the distinct implementations (HW and SW), that is, both update these regions but in
different phases of the system. Such an organization enables the efficient reuse of mem-



ory, reducing the footprint used by the system to ensure persistence. However, certain
precautions should be taken during the transition between modes in order to avoid possi-
ble race conditions, arising from the different strategies used to guarantee the persistency
of the application state. While the NV-HTM delegates this task to a checkpoint scheme,
the SW mode, implemented by PSTM [Avni et al. 2015], writes transactional work di-
rectly to persistent memory at commit stage. Thus, prior to the transition between phases,
it is necessary that the persistent state of the application, produced by the current mode,
reflects the last consistent state, ensuring the isolation of each mode.

3. Experimental Evaluation
All experiments were conducted on an Intel Xeon E5-2660 v4 2.0GHz processor with 14
physical cores, each with 2 hardware threads, for a total of 28 concurrent threads. The
hyper-threading mode was not used as it tends to decrease performance due to capacity
aborts [Carvalho et al. 2018]. The machine is equipped with 64GB of RAM and runs
CentOS 7 Linux kernel version 3.10. For space constraints, the results reported in this
section, obtained by the mean of 30 executions, are only a subset of the STAMP bench-
mark, namely Genome and Vacation, which represent the performance behavior of the
benchmark. Figure 1 shows the execution time comparison between 3 distinct durable
transactional systems: NV-HTM (hardware-only), PSTM (software-only) and NV-PhTM
(phase-based).

Genome presents a hardware-friendly behavior due to low abort rate, around 7%,
which does not require frequently serialization to guarantee system progress. Thereby,
NV-PhTM is able to detect such peculiarity and keep executing transactions in HW mode
(NV-HTM). On the other hand, Vacation has a reasonable abort rate, around 16%, most of
them as a result of capacity aborts. Thus, the system resort to the fallback mechanism to
commit these transactions, leading to a poor performance. When using 6 threads or more,
NV-PhTM starts to follow the software implementation (PSTM), avoiding overheads and
achieving a high efficiency.

0

1

2

3

4

5

6

7

8

9

1 2 4 6 8 10 12 14

E
xe

cu
tio

n 
Ti

m
e 

(s
)

Threads

NV−HTM
PSTM

NV−PhTM

 genome

0

10

20

30

40

50

60

1 2 4 6 8 10 12 14
Threads

NV−HTM
PSTM

NV−PhTM

 vacation

Figure 1. Subset of benchmark STAMP.

The experimental results using the subset of STAMP benchmark show that the ex-



tra cost, caused by the addition of the persistent state consolidation routine during phase
transitions, is low, reaching a maximum of 0.04% at Genome execution time. Conse-
quently, it does not impact the system performance.

4. Conclusion
As an alternative to existing solutions, this work presents a phase-based transactional
system (NV-PhTM), which uses the feedback returned by transactions together with a set
of heuristics to guide the transition between different transactional implementations. The
main contributions of this work are: (i) the addition of the concept of durability in phase-
based systems; (ii) the design of new heuristics that take into account the specificities
presented by PM; (iii) the development of strategies to ensure consistency during the
transition between the different modes.

The experimental evaluation demonstrated the success of NV-PhTM in detect-
ing and guiding phase transitions with low overhead. When compared to NV-HTM
(hardware-only durable transactions) and PSTM (software-only durable transactions),
NV-PhTM provided the best overall results due to its nature of following the best per-
forming system.

References
Avni, H., Levy, E., and Mendelson, A. (2015). Hardware transactions in nonvolatile mem-

ory. In Proceedings of the 29th International Symposium on Distributed Computing -
Volume 9363, DISC 2015, pages 617–630, Berlin, Heidelberg. Springer-Verlag.

Carvalho, J. P. D., Araujo, G., and Baldassin, A. (2018). The case for phase-based trans-
actional memory. IEEE Transactions on Parallel and Distributed Systems.

Castro, D., Romano, P., and Barreto, J. (2018). Hardware transactional memory meets
memory persistency. In 2018 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 368–377, Vancouver, BC, Canada. IEEE.

Harris, T., Larus, J., and Rajwar, R. (2010). Transactional Memory. Morgan and Claypool
Publishers, 2nd edition.

Minh, C. C., Chung, J., Kozyrakis, C., and Olukotun, K. (2008). Stamp: Stanford trans-
actional applications for multi-processing. In 2008 IEEE International Symposium on
Workload Characterization, pages 35–46, Seattle, WA, USA. IEEE.

Mutlu, O. and Subramanian, L. (2014). Research problems and opportunities in mem-
ory systems. Supercomputing Frontiers and Innovations: an International Journal,
1(3):19–55.


