
Approximate Reciprocal Square Root with Single- and
Half-Precision Floats

Matheus M. Susin, Lucas Francisco Wanner

University of Campinas

matheus.susin@students.ic.unicamp.br, lucas@ic.unicamp.br

Abstract. In this work, we compared the precision, speed, and power consump-
tion of the reciprocal square root of a single-precision floating point number,
using different approximation techniques. We also devised an equivalent ap-
proximation for half-precision floating point numbers, and evaluated its perfor-
mance across the whole range of positive non-zero 16-bit floating point values.

1. Introduction

The reciprocal square root, f(x) = 1.0√
x
, is used to normalize vectors, an important part

of calculating angles of incidence and reflection for lighting and shading. Before the
introduction of Streaming SIMD Execution (SSE) by Intel in the Pentium III series, in
1999, home computers were slow at evaluating this function. 3D companies such as
3dfx and Silicon Graphics used an approximation technique that starts from a seemingly
arbitrary starting point, performs one or more Newton-Raphson iterations, and achieves a
relative error that is smaller than 2%. Given that a brute-force approach to the challenge of
finding a good starting point in the mid-1980s would take a very long time, it is believed
that the starting point was found by a bisection method [McEniry 2007].

Despite this technique having passed through several companies whose products
required fast 3D computation, it only became widely known after the source code for
Quake III Arena, by id Software, was made available. It has thus become known as
the “Carmack Fast Inverse Square Root”, after John Carmack, who implemented several
tricks for fast computation at id [Kushner 2002].

2. Objectives
In this work, we intend to evaluate the accuracy of the original function for a given sce-
nario. We also wish to measure whether it is faster and/or more energy-efficient than
computing the function in hardware.

Finally, we wish to find an ideal constant to replicate the implementation of Car-
mack’s Fast Inverse Square Root for half-precision floats [IEEE 754-2008 2008].

33



3. Code
1 f l o a t Q r s q r t ( f l o a t number )
2 {
3 i n t i ;
4 f l o a t x2 , y ;
5 c o n s t f l o a t t h r e e h a l f s = 1 . 5 F ;
6

7 x2 = number ∗ 0 . 5 F ;
8 y = number ;
9 i = ∗ ( i n t ∗ )&y ;

10 i = 0 x5f3759df − ( i >> 1) ;
11 y = ∗ ( f l o a t ∗ )&i ;
12 y = y ∗ ( t h r e e h a l f s − ( x2 ∗ y ∗ y ) ) ; / / 1 s t i t e r a t i o n
13 / / y = y ∗ ( t h r e e h a l f s − ( x2 ∗ y ∗ y ) ) ; / / 2nd i t e r a t i o n , t h i s can be removed
14

15 r e t u r n y ;
16 }

Listing 1. Carmack’s implementation of an approximation for the reciprocal square root

1 i m p o r t random
2 i m p o r t numpy as np
3 i m p o r t i t e r t o o l s
4

5 i t e r a t i o n s i z e = 1048576
6 f = open ( ” f l o a t 3 2 d a t a s e t . t x t ” , ”w+” )
7

8 f l o a t 3 2 e x p r a n g e = r a n g e (−6 , 7 )
9 c o m b i n a t i o n s = [ p a i r f o r p a i r i n i t e r t o o l s . c o m b i n a t i o n s ( f l o a t 3 2 e x p r a n g e , 2 ) ]

10 t o t a l s i z e = l e n ( c o m b i n a t i o n s ) ∗ i t e r a t i o n s i z e
11 f . w r i t e ( s t r ( t o t a l s i z e ) + ”\n ” )
12 i = 0
13 f o r p a i r i n c o m b i n a t i o n s :
14 f o r k i n r a n g e ( i t e r a t i o n s i z e ) :
15 u n i f o r m s t a r t = f l o a t ( ” 1 . 0 e ” + s t r ( p a i r [ 0 ] ) )
16 u n i f o r m e n d = f l o a t ( ” 1 . 0 e ” + s t r ( p a i r [ 1 ] ) )
17 x = np . f l o a t 3 2 ( random . un i fo rm ( u n i f o r m s t a r t , u n i f o r m e n d ) )
18 y = np . f l o a t 3 2 ( random . un i fo rm ( u n i f o r m s t a r t , u n i f o r m e n d ) )
19 z = np . f l o a t 3 2 ( random . un i fo rm ( u n i f o r m s t a r t , u n i f o r m e n d ) )
20 v = x ∗ x + y ∗ y + z ∗ z
21 f . w r i t e ( ( ”%e ” % v ) + ”\n ” )
22 i += 1
23 # p r i n t ( s t r ( i ) + ” / ” + s t r ( t o t a l s i z e ) )

Listing 2. Python script that generates over 81 million FP32 values

4. Methods
We evaluate the performance and precision of Carmack’s implementation of the function,
comparing it to 1.0 / sqrtf(x), using math.h. We perform these steps with and
without the -ffast-math flag. In total, there are 4 different compilation outputs, each
a combination of these settings. We also estimate energy consumption using Intel RAPL
counters accessed via perf. All experiments were run 2500 times.

To find the constant for half-precision floats, we iterate over all normal positive
non-zero values of half-precision floats, trying out all possible 16-bit constants, and set-
tling for the one with the smallest maximum error. Only the range of positive normal
numbers was considered, that is, from 0x0040 to 0x7bff.

We wrote a variant of Listing 1 that takes a half-precision floating point number,
and a magic number to use as the constant in line 10. We listed all constants that, when
passed with a normal positive half-precision float to the function, would yield a normal
positive half-precision float. We then compared this result with casting the half-precision
float to a single-precision float, calling sqrtf, then casting it back to half-precision float.

34



5. Results

Table 5 shows the execution time and energy consumption of the 4 binary files. They
were all compiled with -O3 -march=native -mtune=native on an Intel Core
i5-4590 3.30GHz CPU with gcc 6.3.0-18 for Debian.

The 4 programs are:

1. no-approx: Using 1.0 / sqrtf(x), and no additional compilation flags.
2. fast-math: Using 1.0 / sqrtf(x), and -ffast-math as an additional

compilation flag.
3. quake: Using Carmack’s implementation, and no additional compilation flags.
4. quake-fast: Using Carmack’s implementation, and -ffast-math as an ad-

ditional compilation flag.

PROGRAM MAX RELATIVE ERROR EXECUTION TIME ENERGY
no-approx N/A (used as baseline) 649.69 ± 002.34 ms 14.06 ± 00.22 J
fast-math 3.0× 10−5% 146.30 ± 001.03 ms 03.90 ± 00.06 J
quake 0.175% 090.86 ± 000.95 ms 02.92 ± 00.05 J
quake-fast 0.175% 090.06 ± 000.83 ms 02.90 ± 00.05 J

Table 1. Results obtained from running the 4 different programs

no-approx fast-math quake quake-fast
Binary file

0

100

200

300

400

500

600

Ti
m
e 
(m

s)

Time
Energy

0

2

4

6

8

10

12

14
En

er
gy

 (J
)

Figure 1. Bar chart comparing the 4 versions of the program in elapsed time and consumed energy

The 16-bit constant that yields the best result for an equivalent function over half-
precision floats is 0x59b8, with a maximum relative error of 0.20%. Due to the unavail-
ability of hardware support for the floating-point-16 type in the CPUs that we had access
to, a half-precision software library [Rau 1 16] was used, greatly increasing the overhead.
We were thus unable to evaluate its performance.

35



6. Conclusion
Even in software, Carmack’s approximation still performs better than Intel’s vrsqrtss
SSE instruction. If low latency is required, and thus offloading to an accelerator is not
viable, this function can be used instead. It is 4 orders of magnitude less precise than the
hardware alternative, which performs several Newton-Raphson steps, so the programmer
must be aware of the application requirements before replacing one with the other. Provid-
ing several instructions in hardware with variable numbers of Newton-Raphson iterations
could allow the developer to choose how much precision to use, trading off performance.

Moreover, we did not evaluate the entire range of 32-bit floating point numbers.
Better or worse accuracy may be achieved over different ranges. Again, understanding
the application is paramount.

Finally, we found an ideal constant for the entire range of normal positive half-
precision floating point values. A different constant may be used if the range is limited,
and the relative error needs to be smaller than 0.20%. For an equivalent double-precision
constant, found via the bisection method, refer to [McEniry 2007].

Acknowledgements
This work was supported in part by CNPq, CAPES, and FAPESP.

References
IEEE 754-2008 (2008). IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-

2008.

Kushner, D. (2002). The wizardry of id. IEEE Spectrum, pages 42–47.

McEniry, C. (2007). The mathematics behind the fast inverse square root function code.

Rau, C. (accessed on 2017-11-16). IEEE 754-based half-precision floating point library.
https://half.sourceforge.net/.

36


