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Abstract. Hydrological models are commonly employed to calculate water flows on 
rivers and watersheds for the analysis of extreme events in nature. Computations in 

these models can grow depending on the numerical method, and also on the spatial 

and temporal resolutions, thus affecting the model efficiency and utility. This work 
parallelizes the MGB hydrological model on either CPU with OpenMP or GPU with 

OpenACC, respectively, aiming at the improvement in performance by employing 

computing resources of an HPC system. An analysis of the sequential and parallel 
executions is presented together with the runtime, speedup, efficiency, and load 

balance achieved. 

1. Introduction 

Hydrological modeling is commonly employed in both research and industry, and is primarily 

concerned with water flows on rivers and watersheds. Applications include the analysis of 

extreme events (floods and droughts), forecast of river discharge etc. 

 The main equations associated to water flow processes are PDEs known as the Saint-

Venant equations, mainly used in rainfall-runoff models [Paiva et al. 2011]. Depending on the 

numerical method used to solve these equations, the accuracy and quality of the model solution 

are improved, although more computational effort may be required. Moreover, the model 
performance and utility are also affected by the spatial and temporal resolutions because 

runtimes predominantly depend on domain size. 

 Parallel computing is a standard way to reduce runtimes with widely available 
multiprocessor computers (CPUs), and graphics processing units (GPUs) used for parallel 

computations. Many works investigated parallelization of hydrological models: CalTWiMS 

(MPI) [Pau and Sanders 2006], JFLOW (GPU) [Lamb et al. 2009], LISFLOOD-FP (OpenMP) 

[Neal et al. 2009], and LISMIN (GPU) [Sarates 2015]. 

 The objective of this work is to parallelize the MGB hydrological model on either CPU 

with OpenMP or GPU with OpenACC, respectively, by employing computing resources of an 

HPC system, showing the improvement in performance, and presenting the runtime, speedup, 
efficiency, and load balance achieved. 

2. MGB hydrological model 

The MGB (Modelo de Grandes Bacias) hydrological model is developed at the IPH-UFRGS in 
Brazil focusing on improving the knowledge of hydrological processes in large-scale 

watersheds, particularly in the South America region. 

 The model has 53 Fortran90 source files with modules of main, calibration and inertial 
model variables, and three hydrological units represent the spatial discretization: catchments, 

subbasins, and hydrological response units (HRUs). Catchments and subbasins are regions that 

contribute water to drainage network segments and outlet points, respectively, whereas HRUs 
are regions of similar hydrological behavior. 
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 The MGB model simulates 1D propagation of water flows from the inertial 
simplification of the Saint-Venant equations (figure 1a) [Fan et al. 2014] formed by the 

continuity (homogeneous hyperbolic PDE of convection) and the momentum (pressure, bed 

gradients, and friction) equations, where h is water height, q is discharge, y = h+z is water level 
relative to elevation z, g is the acceleration of gravity, n is the Manning coefficient, t is time, 

and x is longitudinal distance. 

 These equations are solved with forward in time and centered in space finite difference 
approximations (figure 1b) for an explicit numerical scheme (figure 1c) using initial and 

boundary conditions, where z is the bottom of the river elevation, NC is number of catchments, 

and i and k are spatial and temporal indexes, respectively. The scheme loops through each 

catchment with the inertial model that is comprised of 3 routines (figure 1d) that calculate stable 

time steps tflood for       (1), water height and discharge at position i+1/2 (2,3), and water 

height and water level at position i (4,5). 

 

Figure 1 - MGB model: (a) continuity and momentum equations, (b) finite difference 
approximations, (c) explicit numerical scheme, and (d) Fortran routine of inertial model 

3. Parallelization of the MGB model 

This work aims at parallelizing loops present in the most time-consuming routines of the MGB 

model on either CPU with OpenMP or GPU with OpenACC, respectively, for the improvement 
in performance by employing computing resources of the Laquibrido cluster [Mendes 2016], 

maintained by LAC/INPE and acquired with funds from the government of Brazil. This HPC 

system has nodes with 2 Intel Xeon E5-2660v2 x86 processors of 2.2 GHz (10 cores each, 2 
threads per core for 40 virtual threads as 40 CPUs), 128 GB of RAM memory, and 2 NVIDIA 

Tesla K20m GPUs of 705MHz. 

 OpenMP is an API that parallelizes applications with multiprocessor computers in 

shared memory environments. The API is designed as a set of compiler directives and a library 
of functions that dynamically create threads for parallel execution, usually of loops with 

independent instructions. OpenACC is a standard of directives that supports GPU devices. 

Transfer of data between host (CPU) and device (GPU) is necessary for intermediate 
computations to be performed on the device, and results to be stored back into main memory. 

 The MGB model is run for two test cases: Purus, one of the main tributaries of the 

Amazon river, and Niger, the largest river in West Africa. The Purus and Niger input data have 
1984 catchments, 16 subbasins, 9 HRUs for 4747 time steps, and 4307 catchments, 9 subbasins, 

11 HRUs for 5800 time steps, respectively. 

 By instrumenting the MGB model for profiling with the pgf90 compiler, three routines 

of the inertial model were identified as the most time-consuming routines. Table 1 shows 
information from the profiling with CPU times of the sequential execution of the MGB model 

for the two test cases. 
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Table 1 – Profiling of sequential execution of the MGB model 

 Purus Niger 

Routine Calls Runtime (s) 
Percentage of 

model runtime (%) 
Calls Runtime (s) 

Percentage of 

model runtime (%) 

flood_continuity 1181973 92.55 46.16 633649 104.23 45.29 

flood_discharge 1181973 75.22 37.52 633649 85.95 37.35 

flood_timestep 1181973 24.89 12.42 633649 25.56 11.11 

Other routines - 7.82 3.90 - 14.37 6.25 

MGB model - 200.48 100 - 230.11 100 

 The routines flood_timestep, flood_discharge, and flood_continuity represent 96.1% 

and 93.75% of model runtime for the Purus and Niger test cases, respectively. Therefore 

OpenMP and OpenACC directives were used in loops that iterate over catchments with 
independent instructions, setting private variables and reduction operations where necessary. 

 For instance, the OpenMP and OpenACC directives used in the routine flood_timestep 

are in table 2, and the directives used in the other routines are similar with minor differences. 

The static schedule is used for an even workload distribution because the computations assigned 
to each thread are practically the same, i.e., the number of instructions executed by each thread 

are approximately equal, so that other data decomposition scheme such as dynamic, or guided 

result in a worse performance. 

Table 2 – OpenMP and OpenACC directives for the routine flood_timestep 

API Compiler directive 
OpenMP !$OMP parallel do private (hmaxfl,dtflood) reduction(min:dttest) schedule(static) 

OpenACC 
!$ACC data copyin(SRIO,Hfl) 

!$ACC parallel loop private(hmaxfl,dtflood) reduction(min:dttest) 

4. Preliminary results 

Results in table 3 for the Purus and Niger test cases with 1900 and 4300 catchments, 

respectively, include the sequential (as 1 thread) and parallel runtimes (RT; wall times), speedup 
(SP; sequential over parallel runtime), efficiency (EF; speedup over number of threads), and 

load balance (LB; difference between maximum and minimum thread times) using either 

threads with OpenMP or GPU with OpenACC. 

Table 3 – Performance of parallelized routines of the MGB model (in seconds) 

Purus 
Routine MGB 

model flood_timestep flood_discharge flood_continuity 

CPU 

Threads 
RT SP EF LB RT SP EF LB RT SP EF LB SP 

1 21.7 1.0 - - 218.2 1.0 - - 91.4 1.0 - - 1.0 

2 12.0 1.8 0.9 12.0-11.7 = 0.3 115.6 1.8 0.9 115.6-109.0 = 6.6 50.0 1.8 0.9 50.1-44.1 = 6.0 1.5 

5 5.9 3.6 0.7 5.9-5.7 = 0.2 49.8 4.3 0.9 49.8-45.9 = 3.9 19.3 4.7 0.9 19.3-17.3 = 2.0 2.5 

10 6.1 3.5 0.3 6.1-3.7 = 2.4 27.3 7.9 0.8 27.3-25.3 = 2.0 15.3 5.9 0.6 15.4-10.2 = 5.2 2.9 

20 9.7 2.2 0.1 9.7-4.7 = 5.0 16.1 13.5 0.7 16.0-13.4 = 2.6 15.7 5.8 0.3 15.8-7.8 = 8.0 2.8 

25 10.8 2.0 0.1 10.8-8.5 = 2.3 14.4 15.0 0.6 14.5-11.6 = 2.9 16.3 5.5 0.2 16.3-10.4 = 5.9 2.6 

1 GPU 44.2 0.5 - - 25.1 8.7 - - 322.9 0.3 - - 0.9 

Niger 
Routine MGB 

model flood_timestep flood_discharge flood_continuity 

CPU 

Threads 
RT SP EF LB RT SP EF LB RT SP EF LB SP 

1 22.7 1.0 - - 226.0 1.0 - - 88.8 1.0 - - 1.0 

2 12.6 1.8 0.9 12.6-11.9 = 0.7 127.7 1.8 0.9 127.7-113.6 = 14.1 51.4 1.7 0.9 51.4-43.4 = 8.0 1.5 

5 5.6 4.0 0.8 5.6-5.4 = 0.2 53.5 4.2 0.8 53.5-48.8 = 4.7 22.8 3.9 0.8 22.9-16.7 = 6.2 2.8 

10 4.0 5.6 0.6 4.0-3.5 = 0.5 28.1 8.0 0.8 28.1-26.3 = 1.8 12.1 7.3 0.7 12.1-8.7 = 3.4 3.7 

20 5.5 4.0 0.2 5.5-4.2 = 1.3 17.9 12.6 0.6 18.0-13.4 = 4.6 9.1 9.7 0.5 9.1-5.1 = 4.0 3.3 

25 6.0 3.8 0.2 6.0-4.1 = 1.9 15.2 14.8 0.6 15.2-11.5 = 3.7 10.5 8.4 0.3 10.5-5.0 = 5.5 3.3 

1 GPU 22.8 1.0 - - 12.6 17.9 - - 350.6 0.3 - - 0.9 

 The runtimes of the routine flood_timestep are lower with either 5 (Purus) or 10 (Niger) 

threads on CPU because this routine has a small number of instructions (low granularity), and in 

both test cases the load balance time differences are lower with 5 threads. Performance on GPU 
is low due to the reduction operation, i.e., besides computations, logical instructions demand 
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more GPU effort. Figure 2 shows for several catchments that the routine flood_discharge (high 
granularity) presents GPU runtimes similar to the lowest CPU runtimes achieved with 25 

threads. The routine flood_continuity reaches the lowest runtimes with either 10 (Purus) or 20 

(Niger) threads on CPU, and a poor performance on GPU because this routine has a sequential 
inner loop for a table search of an interpolation process that hinders GPU parallel use. 

 

Figure 2 – CPU sequential, and CPU and GPU parallel runtimes of the routine 
flood_discharge for the (a) Purus, and (b) Niger test cases 

5. Conclusions 

This work aimed at parallelizing the MGB hydrological model in an HPC system for the 

improvement of performance. The parallelization was implemented on either CPU with 

OpenMP or GPU with OpenACC for two different test cases. 

 From the sequential execution of the MGB model, three routines were identified as the 

most time-consuming, and subsequently parallelized in loops. The routine flood_timestep 

achieved better performance on CPU using few threads in both test cases with the workload 
evenly distributed. The routines flood_discharge and flood_continuity presented low runtimes 

on CPU with many threads, the former with similar runtimes on GPU for the Niger test case. 

 As future work, the MGB model compilation will include flags for AVX vector 

instructions to further optimize the CPU performance. NUMA effects will be analyzed to detect 
if the HPC system hardware architecture impacts the behavior of the parallel implementation. A 

potential contribution will be the use of hardware counters to define measures for an automatic 

optimal CPU/GPU parallelization. A hybrid CPU/GPU scheme will be investigated. 
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