
A Context-Aware Library for Mathematical Approximations

Roberto Alejandro Hidalgo Castro and Lucas Wanner

1Institute of Computing – UNICAMP
Av. Albert Einstein, 1251 – 13083-852 – Campinas, Brazil.

{r164787,lucas}@ic.unicamp.br

Abstract. We have built a mathematical library that includes a series of func-
tions with different implementations with varying precision. We couple this li-
brary with a system service that monitors the computer context, including energy
consumption, and according to this context, using specified rules, dynamically
changes the implementations used by the target applications. Our case studies
show that our library can trade-off at most of 4% degradation in application
quality up to 40% savings in energy consumption.

1. Introduction
Recently, approximate computing has emerged as a promising approach to the energy-
efficient implementation of digital systems. Approximate computing relies on the ability
of many systems to tolerate some loss of quality in the computed result. By relaxing the
need for fully precise operations or where an approximate result is sufficient, approximate
computing techniques allow considerably improved energy efficiency.

Approximate computing has been explored at the compiler level, with works
like EnerJ [Sampson et al. 2011] and PetaBricks [Ansel et al. 2009]; at runtime with
Green [Baek and Chilimbi 2010], and ViRUS [Wanner and Srivastava 2014], and
through hardware architectures like Doppelanger [Miguel et al. 2015] and DRUM
[Hashemi et al. 2015].

These works have obtained progress in energy saving by cost of quality as well;
Virus [Wanner and Srivastava 2014] managed to get saving in energy by 40% for the ap-
plication Blackscholes and 50% for the application Swaptions just for a cost of at most
4% degradation in quality; Green [Baek and Chilimbi 2010] obtained an energy improve-
ment of 28% by the lost of quality of les than 1% in the application Blackscholes.

We develop a functional adaptation technique through multiple code paths, with a
focus on dynamic control monitoring for variable cost and quality objectives. Our results
show us that with the use of our mathematical library we can achieve considerable savings
in energy consumption at a low cost in quality degradation. This work also shows that
if we build policies around the implementations of these library, we can lead our target
application to reach an energy consumption goal over time, and our results show how the
energy at the end oscillates around this goal.

2. System design and implementation
Our application support system allows applications to dynamically trade function imple-
mentations inside the application and with this trading increasing or decreasing the quality
of the results but with the advantage of decreasing or increasing the energy consumption

53



of the application when is being run at the operating system. To allow this change in the
function implementations in the target application, our system has a library that has been
built containing many implementations of the same function. When possible, this library
is linked automatically to the application and the system is able to check the performance
of the application at runtime, measure the current energy consumption and depending on
this, to trigger instructions to change the function implementations.

The goal of this change is to increase or decrease the energy consumption of the
application but at the cost of the least lost of quality as possible. In the following parts, we
explain how this library is built and linked to the application and how the system controls
the performance of the application and alters the quality at runtime.

2.1. Variable quality library design

This library was built with in C language, using C tools like macros to allow a multiple
declaration of functions and to change implementations of the functions dynamically. As
we said, certain function has multiple implementations and to distinguish between each
of them, we are using levels. With this library, we should be able to change these levels
inside the applications (each level represents a certain grade of quality reduction with
purpose of decreasing the energy consumption). To easily change the level of a function,
we are using helpers to get/set the quality level. Source code and examples for the library
are available at https://github.com/RobertoHC/MathContextAwareLibrary.

This library will support C math functions, each of which has four basic imple-
mentations. These implementations are divided in four main versions for each function:
double, float, approximate and faster approximate. We use levels to easily refer to each of
these implementations.

2.2. Dynamic Adaptation and Monitoring System

In order to dynamically switch implementations depending on the context, the library
includes a UNIX signal handler that receives asynchronous commands from a context
monitoring service and uses the set qlevel and get qlevel helpers that are available for
each of the library functions to change implementations using function pointers.

A system daemon monitors the resource usage of the applications and sends sig-
nals to reduce or increase the quality when appropriate. The monitoring system has an
energy goal set as a percentage of the energy consumption at the highest quality (the de-
fault quality of the application). We work with two signals, SIGUSR1 and SIGUSR2 to
reduce and increase quality, respectively. This step is done periodically by the monitor-
ing daemon, trying to reach the energy goal at each iteration. This system uses energy
counters to estimate the energy consumption.

3. Experiments
We develop a methodology for the evaluation of the developed library in the target appli-
cations and the results obtained in this work.

3.1. Experimental Setup

For our experiments, we use VarEMU [Wanner et al. 2013], a simulation framework that
allows us to emulate variations in power consumption and to adapt to these variations

54



in software. VarEMU supports configurable models for static and dynamic power. For
this work we used the default model which is fitted to a Cortex M class ARM chip
[Wanner et al. 2013]. In our experiments, we report energy consumption and execution
time savings relative to the standard app with no modifications. Energy is given in Joules
and execution time in cycles. These numbers are normalized in our experiments. The
virtual machine created trough VareEMU interacts with it through memory mapped reg-
isters, and VarEMU measure the energy and execution time by creating a checkpoint for
all VarEMU registers.

3.2. Results

In the following table, we show the results of using library function implementations for
each of the target applications, showing the trade-off between time/energy consumption
and application quality.

Table 1. Approximate Computing Frameworks
Applications Versions

Medium quality Low quality
time energy quality time energy quality

(% savings) (% savings) loss (% savings) (% savings) loss
Blackholes 10.61 9.52 1.578 20.85 20.34 2.678
Bodytrack 17.5 17.7 1.855 16.4 16.2 2.137
Facesim 0.02 0.03 0 0.02 0.02 0
Ferret 17.62 11.15 1.457 21.22 15.21 2.726
Vips 12.04 12.1 0.835 18.02 18.2 1.957

Swaptions 7.92 7.91 1.486 19.92 20.88 3.486
Whetstone 40.37 40.34 5.9/3.3 (MIPS) 40.45 40.69 5.9 /3.3 (MIPS)

FFT 61.6 61.8 2.542 62.5 62.9 3.611
Basicmatch 38.72 38.83 0.122 41.72 42.83 0.234

Susan 7.47 6.82 0.147 9.47 9.82 0.347

We use the metric NRMSE (normalized root mean square error) to analyze the
output quality of each of the applications (except for the case of Whetstone, whose output
is in MIPS). For most of the applications, there is a good reduction in execution time as
well as in energy consumption. We got over 15% energy reduction in six of the applica-
tions we evaluated, without losing more than 4% of their quality output (using NRMSE).
In Susan where we got low time and energy savings, with similarly negligible quality
loss, resulting in modest savings for a very low lost in quality. In particular in the case
of Facesim, seems that the use of math functions that system supports doesn’t have too
much impact in the whole application performance.

In addition to the evaluation for each individual application, we also evaluate how
the monitoring system works with the applications. Figure 1 shows how the monitoring
system works with two of the evaluated applications: FFT and Basicmath. This monitor-
ing system starts with a power goal and it sends signals to the application, so it decreases
its quality output (which can be seen in the be plots as levels) and this causes a lower
power consumption, getting closer to the power goal. In the graphics the average power
consumption always gets closer to the goal overtime, and it usually oscillates at the end
over this goal.

55



0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

Time (seconds)

Po
w

er
(m

W
ts

)

Power goal 0.4 (40%)

0

1

2

3

4

5
Po

w
er

(m
W

ts
)

Levels of quality

(a) FFT

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

Time (seconds)

Po
w

er
(m

W
ts

)

Power goal 0.61 (61%)

0

1

2

3

4

5

Po
w

er
(m

W
ts

)

Levels of quality

(b) Basicmath

Figure 1. Average power across time

4. Conclusion
We developed an application support system that includes a polymorphic math library
and a dynamic context monitoring and quality adaptation system. We perform function
replacement in polymorphic versions of the standard C math library function in Linux.
The application case studies using this library shows that we can trade off a marginal
effect on output quality, at most 4% degradation in application quality for up to 40%
savings in energy consumption and time execution.

Acknowledgements
This work was supported in part by CNPq, CAPES, and FAPESP.

References
Ansel, J., Chan, C., Wong, Y. L., Olszewski, M., Zhao, Q., Edelman, A., and Amaras-

inghe, S. (2009). Petabricks: A language and compiler for algorithmic choice. SIG-
PLAN Not., 44(6):38–49.

Baek, W. and Chilimbi, T. M. (2010). Green: A framework for supporting energy-
conscious programming using controlled approximation. SIGPLAN Not., 45(6).

Hashemi, S., Bahar, R. I., and Reda, S. (2015). Drum: A dynamic range unbiased multi-
plier for approximate applications. In ICCAD’15, pages 418–425. IEEE Press.

Miguel, J. S., Albericio, J., Moshovos, A., and Jerger, N. E. (2015). Doppelganger: A
cache for approximate computing. In MICRO-48, pages 50–61. ACM.

Sampson, A., Dietl, W., Fortuna, E., Gnanapragasam, D., Ceze, L., and Grossman, D.
(2011). Enerj: Approximate data types for safe and general low-power computation.
SIGPLAN Not., 46(6):164–174.

Wanner, L., Elmalaki, S., Lai, L., Gupta, P., and Srivastava, M. (2013). Varemu: An
emulation testbed for variability-aware software. In CODES+ISSS ’13. IEEE Press.

Wanner, L. and Srivastava, M. (2014). Virus: Virtual function replacement under stress.
In HotPower’14, Berkeley, CA, USA. USENIX.

56


