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Abstract. The MPI standard is largely used in HPC systems. Such systems
employ a large number of computing nodes. Thus, Fault Tolerance (FT) is a
concern since a large number of nodes leads to more frequent failures. Two
essential components of FT are Failure Detection (FD) and Failure Propagation
(FP). This paper proposes improvements to existing FD and FP mechanisms, like
initial position shuffling, false-positive detection, and a chord-like propagation,
to provide more portability, scalability, and low overhead. Results show that
the methods proposed can achieve better or at least similar results to existing
methods while providing portability to any MPI standard-compliant distribution.

1. Introduction
MPI (Message Passing Interface) is a standard largely used in HPC (High-Performance
Computing) environments nowadays. In HPC environments, Fault Tolerance (FT) is a
common concern since a large number of nodes ultimately leads to an increased number of
failures (the Mean Time Between Failures (MTBF) can be as low as a few hours[4])). Two
significant components present in fault-tolerant systems are the Failure Detection (FD)
and the Failure Propagation (FP), used to report, at any time, the state (DEAD or ALIVE)
of all processes in an application [1]. In many cases, these solutions can incur a high-
performance overhead and high latency for detecting and propagating failures. In terms of
scalability, for example, they can impact the overall performance of the applications [1].

This work1 proposes changes to existing FD solutions and a new algorithm for FP.
The main objectives are to address portability (FD and FP must work out-of-the-box with
different MPI distributions), scalability, and low overhead.

2. Background and Related Work
Fault Tolerance (FT) is an active research subject in HPC systems. This paper focuses on
two of the fault tolerance components, the FD and FP mechanisms.

Usually, for FD, some monitoring system is employed. Several different approaches
have been employed as FD mechanisms. Some use daemon processes (one per node)
to monitor other processes in the same node (via OS signals). These daemon processes
are monitored (addressing node failures), either by the root process [5] or by heartbeat
messages exchanged between the daemons [7]. Others rely on the slurmd daemon to
detect process failures via exit codes [2]. The gossip-style approach is based on message
exchanges, where the group to exchange alive messages is randomly selected [3]. However,
this random approach was shown not to be scalable [7]. Finally, the heartbeat ring
approach works by distributing processes throughout a ring and exchanging messages
between neighbors [1]. This paper focuses on the heartbeat ring FD mechanism. The
approaches that rely on OS-related mechanisms depend on specific tools, such as PMIx or
the Slurmd tool. These approaches do not provide portability and are incompatible with
our proposal that aims to be usable with any standard-compliant MPI implementation.

1The authors are grateful to the Center of Petroleum Studies (CEPETRO-Unicamp/Brazil) and PETRO-
BRAS S/A for the support to this work as part of OmpCluster Project (https://ompcluster.gitlab.io/).
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Figure 1. Heartbeat ring topology
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Figure 2. Shuffled positions
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For FP, it is common to employ a reliable broadcast mechanism. The hyper-cube
broadcast algorithm (HBA) is an option in which a propagator sends the broadcast to
the 2k processes forward and backward in the ring [1] (with k = blog2(N)c, and N the
number of processes). Circulant graphs, like binominal graphs (BMG), are a good option
to achieve a balance between propagation delay (time for the propagation to achieve all
processes) and scalability (number of exchanged messages). In BMG, the broadcast is
sent to processes following powers of two (i.e., a process with rank k sends messages to
processes with ranks k + 20, k + 21, k + 22, ...), forward and backward in the ring. This
approach creates redundant messages since a process can be selected more than once (one
time forward and backward in the ring) [7]. As it is also the case with FD, gossip protocols
are also an option for FP. Propagation is fast but, in the worst case, some processes may
never be reached [7]. In this work, we propose an adaptation of the Chord protocol [6] to
make FP, which can be a better alternative to current FP schemes. Our approach is capable
of improving scalability while still providing low propagation delays.

3. Improved mechanisms
In the ring heartbeat topology, each process is an emitter (sends heartbeat messages
to the successor process in the ring) and observer (receives heartbeat messages from
the predecessor process in the ring), as shown in Figure 1-a), where node 0 is emitting
to node 1 and observing node 7, and so on. Two properties control the heartbeats: the
period δ (time between the heartbeat messages); and timeout η (time before the
observer considers the emitter failed). After the timeout, the ring is recomposed: the
process that was emitting to the failed process waits for a new observer, that will be the
process that observed the failure. Figure 1-b) shows this mechanism after node 2 fails.

In this model (the same used by Bosilca et al. [1]), there is no differentiation
between individual processes and nodes. Thus, when a node with several processes
fails, if those processes are observing each other (like shown in Figure 2-a), there will
be a p × η time delay to detect all failures, where p is the number of failed processes.
Unfortunately, this problem is not rare since this distribution of processes, depending on
the configuration, might be the default. To tackle this, we propose randomizing the initial
position of processes in the ring. This is shown in Figure 2-b), which might not be optimal,
but it is a simple and scalable solution with good results in practice as shown in Section 4.

Another concern FT mechanisms have to take into consideration is false-positive
failures. In HPC environments, disputes for resources or even intermittent failures may
cause delays in the heartbeat. The algorithm by Bosilca et al. does not deal with false-
positive failures. We propose to make the observer watch messages from any source other
than the emitter. If the heartbeat is received from a non-emitter process (that was a previous
emitter), it means that it was falsely detected as a failed process. Thus we add the process
back to the ring between the observer and the emitter.



Figure 3. Accuracy and overhead
evaluation
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Figure 4. Detection and propagation
delay evaluation
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Concerning FP, HBA and BMG can achieve full propagation in blog2(N)c rounds of
communication. However, the propagation is made both forward and backward in the ring.
We propose using a Chord-style algorithm [6], in which we send the broadcast messages
to the nodes with ranks following steps in powers of two, but only forward, stopping
at blog2(N)c processes. Thus, full propagation can be achieved in blog2(N)c rounds
(like BMG and HBA), while still taking into account FT, since each process will receive
blog2(N) + 1c broadcast messages (in this algorithm, each process, upon receiving the
broadcast message for first time, replicates the message), which is approximatelly half the
number of messages exchanged by HBA (2×blog2(N)c) and BMG (2× (blog2(N)c+1)).

Finally, the last thing to point out is the portability. The algorithm proposed by
Bosilca et al. relies on Open MPI’s internal tools (byte transportation layer), making its use
restricted to Open MPI [1]. Although the authors argue that it is a better option to keep the
heartbeat mechanism low in the application stack [1], we propose to execute the heartbeat
as an MPI program (in a thread of the application), using only MPI standard functions, not
relying on specific tools of the operating systems or on a specific MPI distribution. To do
that, we implemented the original algorithm with our modifications inside a C++ library,
compatible with various MPI implementations, including Open MPI and MPICH.

All the events described by the Bosilca et al. algorithm [1], with the proposed
additions, are iterated in an extra thread. Every θ seconds, the algorithm looks if it is time
to execute any of the events, for example, if it is time to send an alive message, or if the
process received an alive (or broadcast) message and takes the necessary actions.

4. Experimental Evaluation
To evaluate the proposed modifications, we tested them on a small cluster with 3 nodes
with 16 cores each (running a 3.10.0 Linux-Server). For these tests, we used MPICH 3.3.2
configured with UCX. Experiments were executed 30 times, and we present the average
results. For all the tests, we used θ = 1ms, and like Bosilca et al., we define δ = 10× η.

The first set of tests use IMB-MPI1 benchmarks2. Accuracy (values of δ and η,
which reports no false-positive failures or errors) and overhead (comparing executions with
and without the heartbeat) were tested, evaluating two communication patterns, point-to-
point and collective communication for different message sizes. Left plot in Figure 3 shows
the first case, using 2 processes in 2 nodes (low resource competition). Tests managed to
achieve values of η from 1ms to 50ms without any error or false positive detection and
very low execution overhead. The right plot shows results for collective patterns, using 32
processes in 2 nodes (high resource competition). The tests with η less than 3ms presented
timeout errors in the benchmark, meaning that there is too much overhead. In comparison,

2Intel MPI benchmarks: https://github.com/intel/mpi-benchmarks

https://github.com/intel/mpi-benchmarks


tests with period over or equal to 3ms executed without errors or false-positive detection.
Concerning execution overhead, as the message size increases, the overhead reduces (the
negative overhead could be explained by external (machine performance) or internal (MPI
optimizations) factors, this will be investigated in the future). These results are as good as
or better than the proposal made by Bosilca et al. (2.5ms for point-to-point and 10ms for
collectives), and at the same time makes the algorithm’s portability possible by running it
at the application level.

Custom benchmarks compose the second set of tests (using 48 processes in 3
nodes). Each propagation algorithm was tested with the number of failures ranging from 1
to 5 simultaneous failures. Then, the total elapsed time for every process to be notified
about all failures, and the number of messages received by each process (with a tolerance
of 2 seconds to account for late messages) were measured. The left plot of Figure 4 shows
that the propagation delay (P ) is similar for all algorithms. In particular, our approach
reduces the number of messages by 25%, in comparison to the best of the other two
(HBA), which decreases network congestion. Evaluating the locality problem (right plot
in Figure 4), when sequential simultaneous failures occur, the shuffled option performs
better since the probability of the failed nodes being sequential on the ring is reduced.
For random failures, the behavior is similar to both approaches, since normally the the
process are not sequential, but shuffling might distribute processes, with non-sequential
ranks, sequentially on the ring.

5. Conclusions
FT is a common concern in HPC applications. Two essential components of FT are FD and
FP. This paper proposes false-positive detection and initial shuffling for the ring topology
to improve FD and proposes a different FP method. Results show our approach is at least
as good as the original algorithms and, in some ways, better. This proposal is also portable
to any MPI standard-compliant distribution while having low overhead in performance.
Future works could explore tests with larger clusters as well as statistical evaluation for
position shuffling.
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