
Autotuning LLVM Optimization
Passes for Matrix Multiplication in Rust

Emanuel Lima de Sousa, Pedro Bruel, Alfredo Goldman

1Institute of Mathematics and Statistics – University of São Paulo (IME USP)

Postal Code 05508-090 – São Paulo – SP – Brazil

emanuel.lima.sousa@usp.br, phrb@ime.usp.br, gold@ime.usp.br

Abstract. The LLVM compiler framework transforms its Intermediate Repre-
sentation (IR) to optimize code. These transformations are controlled by flags
which interfere on metrics such as the execution time. Selecting flags to improve
the execution time of a program is difficult, and requires expert knowledge. Au-
totuning methods can automate parts of this process and help understanding
the underlying search spaces. This paper describes ongoing work, showing that
LLVM flags can impact the execution time of a Rust matrix multiplication algo-
rithm, and planning future autotuning experiments for flag selection.

1. Introduction
Writing, porting, and optimizing code for High Performance Computing (HPC) archi-

tectures is challenging, and requires expert work and extensive knowledge of a specific
hardware. Autotuning is one way to decrease the cost of optimizing a program, where
we automatically explore a program configuration search space to minimize some target
metric. In the ongoing work described in this paper, we intend to perform autotuning in
the search space defined by compiler flags, to decrease the execution time of a matrix
multiplication algorithm in the Rust language.

Compiler flag selection is a textbook autotuning application. Instead of relying on
generic flag configurations, we can select flags with an autotuner, with significant im-
provements in certain cases. In previous work [4], for example, we show that autotuning
CUDA compiler parameters achieves speedups of up to 3 times in comparison with the
-O2 flag. The LLVM compiler framework [6] uses flags to control optimizations that can
improve performance. Rust is a systems programming language, and its compiler’s front-
end is implemented in LLVM. This paper shows that different LLVM passes impact the
performance of a Rust matrix multiplication program, and describes how we will apply
the Design of Experiments methodology (an autotuning technique) to identify and select
the best flags for performance.

The paper is organized as follows. Section 2 provides a brief overview of LLVM and
of the Rust programming language, and describes a search subspace of LLVM optimiza-
tions. Section 3 describes the LLVM pass selection search space Design of Experiments
and other autotuning methods, and describes the subset of the search space we chose.
Section 4 presents and discusses our preliminary and expected results. Finally, Section 5
describes future work.

2. LLVM Optimization Passes for Rust
Rust is a systems programming language that aims to provide memory safety and high

performance [9]. Rust has been successfully applied on different domains, such as astro-



Table 1. Some of LLVM’s IR optimization flags

Flag constprop instcombine aggressive-
instcombine

jump-
threading

lcssa licm loop-deletion loop-extract

Description Identify and
substitute
constants

Replace
redundant
instructions

Replace
redundant
patterns

Remove con-
dition double
checking

Put loops in
Single Static
Assignment
Form

Extract con-
stant opera-
tions in loops

Remove
dead loops

Extract loops
to functions

Flag loop-reduce loop-rotate loop-simplify loop-unroll loop-unroll-
and-jam

loop-
unswitch

mem2reg memcpyopt

Description Loop
Strength
Reduction

Rotate Loops Canonicalize
natural loops

Unroll loops Unroll and
Jam loops

Unswitch
loops

Move mem-
ory to regis-
ters

MemCpy
Optimization

physics [3] and operating system kernels [8]. The Rust compiler consists of a front-end
for the LLVM compiler framework, and guarantees safety by enforcing data ownership
and object lifetimes. Recent work approached the problem of tailoring the optimization
of the LLVM IR for Rust [7].

The LLVM compiler framework provides an Intermediate Representation (IR) of the
input code, which abstracts details both of the input language and of the target architec-
ture [6]. To use LLVM’s back-end to generate machine code for a new language, it is
sufficient to write an LLVM front-end that generates IR code. Optimizations performed
in the IR are called passes, and can improve the performance of the resulting binary. The
loop unrolling pass, for example, transforms a loop so that it runs more than a single
iteration before a condition check, with the potential to decrease the costs of condition
checking and pointer arithmetic. Table 1 lists 16 LLVM passes that potentially impact
performance. The next section describes the autotuning methods we intend to use to se-
lect LLVM passes to optimize Rust code.

3. Choosing LLVM Passes to Speedup Rust Programs
Although metrics such as compilation time and cache misses are important for program

optimization, the objective in this paper is to find the flag selection which most improves
the execution time of our matrix multiplication program, described in Section 4. There
are 216 possible combinations in the set of flags from Table 1, and it is impossible to
explore such a large space exhaustively. To be able to find good flag selections within a
reasonable amount of time, we will employ Design of Experiments (DoE), a parsimonious
exploration approach.

Search spaces defined by autotuning problems are typically complex and riddled with
local minima, which causes the performance of generic search heuristics to be usually
equivalent to a uniform random sampling algorithm [2] that picks configurations at ran-
dom and keeps the best one. Although we have applied search heuristics to compiler
flag selection with good results in previous work [4], the analyses and explanations that
could be produced from the collected data were limited, due to the uneven sampling those
methods produce.

The DoE methodology provides parsimonious and statistically transparent methods to
choose which experiments to run. Screening experiments, for example, assume a linear
relationship between parameters and performance, and ignore interactions between pa-
rameters. The analysis of a screening experiment enables the identification of the most
impactful parameters, or main effects, with minimal experimentation cost. We will per-
form screening experiments with LLVM passes for Rust in order to remove non-impactful



passes from our search space, and then we will apply more flexible DoE methods, such as
optimal designs, to detect interactions and construct a performance model. More details
regarding the DoE approach can be found in our autotuning work on source-to-source
transformation [5]. The next section will present preliminary experiments, evaluating
the impact of some LLVM pass selections on the performance of matrix multiplication
program in Rust, and discuss future experiments.

4. Impact of LLVM Flags on Matrix Multiplication in Rust
This work aims to use DoE methods to identify flags that impact performance, and to

choose the set of flags that minimizes execution time. We show that 4 sets of flags impact
the execution time of a matrix multiplication program in Rust, justifying and motivating
further efforts to optimize flag selection. We implemented 4 program versions using dif-
ferent libraries, and allocating memory on the heap and on the stack. The code and all
generated data are available on GitHub [1].

Measurements shown in Figure 1 were obtained for a version that allocates memory on
the heap using the Vec native data structure, and multiplied randomly-generated square
matrices of size 512. The comparison baseline was the “release” set of parameters in
Rust’s cargo build utility, which is the highest generic optimization level available. We
also measured the performance of a configuration using no flags. We turned link-time op-
timization off on all experiments, to avoid its interference. We performed the experiments
on an Intel Core i5 3230M with 8GB of RAM DDR3 1600MHz.

15

18

21

24

Baseline instcombine + memcpyopt loop−simplify + mem2reg No Flags

E
xe

cu
tio

n 
T

im
e 

(s
)

Figure 1. Effect of some flag combinations on performance of matrix multipli-
cation in Rust. Each of the 30 repetitions for each experiment is shown
spread over the corresponding experiment id.

The variance of execution times for each flag selection was extremely small, which
means that further experiments can be made cheaper by doing less than 30 repetitions.
We see a clear impact of flag selection on performance, and it is motivating to see that a
simple flag selection can achieve performance approximately 20% slower than the high-
est generic optimization level available. Autotuning flag selection for Rust code seems
promising, and moving forward we will construct a screening design for the 16 flags on
Table 1, and we expect to reduce the flag search space by identifying flags that do not
impact performance.



5. Conclusion
In this paper we discussed the autotuning problem in the context of compiler flags. We

described the LLVM compiler framework, the Rust front-end, and how we can control
the selection of optimization passes. We show that flag selections impact the perfor-
mance of a Rust matrix multiplication program, highlighting that a simple flag selection
achieves performance approximately 20% slower than the highest-level generic optimiza-
tion. In future work we will run screening experiments to identify significant flags, and
use optimal design to model the impact of passes on performance on a comprehensive
Rust performance benchmark. We will also study the impact of matrix size in compiler
flag selection. We expect to measure significant performance improvement in relation to
the “release” parameters, and to identify which flags are responsible. We will compare
performance improvements of flag selections made by our models with those made by a
random sampling baseline, also measure the performance of our models in a comprehen-
sive benchmark of Rust programs.

References
[1] Code and data on GitHub. https://github.com/emanuellima1/

matrix-multiply-test. Accessed on March 14th, 2020.

[2] Prasanna Balaprakash, Stefan M Wild, and Paul D Hovland. Can search algorithms save
large-scale automatic performance tuning? Procedia Computer Science, 4:2136–
2145, 2011.

[3] Sergi Blanco-Cuaresma and Emeline Bolmont. What can the programming language
Rust do for astrophysics? Proceedings of the International Astronomical Union,
12(S325):341–344, 2016.

[4] Pedro Bruel, Marcos Amarı́s, and Alfredo Goldman. Autotuning CUDA compiler param-
eters for heterogeneous applications using the OpenTuner framework. Concurrency
and Computation: Practice and Experience, 29(22):e3973, 2017.

[5] Pedro Bruel, Steven Quinito Masnada, Brice Videau, Arnaud Legrand, Jean-Marc Vin-
cent, and Alfredo Goldman. Autotuning under tight budget constraints: A transparent
design of experiments approach. In The 19th Annual IEEE/ACM International Sym-
posium in Cluster, Cloud, and Grid Computing (CCGrid 2019). IEEE/ACM, 2019.

[6] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In International Symposium on Code Generation and
Optimization, 2004. CGO 2004., pages 75–86. IEEE, 2004.

[7] Juneyoung Lee, Chung-Kil Hur, Ralf Jung, Zhengyang Liu, John Regehr, and Nuno P
Lopes. Reconciling high-level optimizations and low-level code in LLVM. Proceed-
ings of the ACM on Programming Languages, 2(OOPSLA):1–28, 2018.

[8] Amit Levy, Bradford Campbell, Branden Ghena, Pat Pannuto, Prabal Dutta, and Philip
Levis. The case for writing a kernel in Rust. In Proceedings of the 8th Asia-Pacific
Workshop on Systems, pages 1–7, 2017.

[9] Nicholas D Matsakis and Felix S Klock. The Rust language. ACM SIGAda Ada Letters,
34(3):103–104, 2014.


