
A Fault Tolerant Scheduling Model for Directed Acyclic
Graphs in Cloud

Pedro Henrique Di Francia Rosso1, Emilio Francesquini1

1Centro de Matemática, Computação e Cognição (CMCC)
Universidade Federal do ABC (UFABC)

pedro.rosso@ufabc.edu.br, e.francesquini@ufabc.edu.br

Abstract. Many High Performance Computing (HPC) and resource intensive
applications have been tested and migrated to the Cloud. These applications
may have high data input size, which often has a high correlation to execution
performance and time. Migration to the Cloud demands adaptation of the fault
tolerance (FT) and scheduling approaches. Although those topics are well con-
nected, they are often treated separately. This work proposes a novel integrated
scheduling and FT model which takes into account the characteristics of the
tasks and the target execution nodes. Preliminary results indicate good potential
to improve system reliability and execution makespan of scientific workflows.

1. Introduction

High Performance Computing (HPC) applications, like Seismic Imaging (geophysics),
often have special characteristics, e.g., high resource usage (memory, CPU, etc.). Typi-
cally, these applications run in large clusters and dedicated environments, and recently, in
Cloud. Failures are one of the problems taken into account in those scenarios, which can
be increased when a large number of nodes is employed [2].

Cloud Computing provides a set of shared resources of easy use and management,
and advantageous features such as elasticity and on-demand services [7], and is widely
employed nowadays. These environments present several challenges which include data
migration, cost of replications and reliability [5], and performance. And, like HPC Clus-
ters, Cloud environments are susceptible to failures, and their occurrences tend to become
more probable when one considers the total time spent by cloud-based HPC applications.
Among others, these reasons make building a fault-tolerant framework, with tools that can
predict or detect faults and perform procedures to repair them, more difficult. Moreover,
scheduling jobs in Cloud can be also a challenge due to its heterogeneity.

This work proposes a model with the objective of reducing the makespan of sci-
entific applications focusing on how failures impact and how FT can help. This model
does so by mixing a diverse set of FT techniques and by choosing these techniques based
on the tasks and on the nodes’ characteristics.

2. Background and Related Work

There are two major groups of approaches for FT: Reactive and Proactive. The former
aims to handle faults after they occur, the latter aims on anticipating faults. Checkpoint-
ing, replication and task migration are examples of reactive while self-healing, system
rejuvenation and preemptive migration, examples of proactive methods [3].



Some works relate FT and scheduling. A recent survey [6] gathered works that
take into account FT as an objective for scheduling. Articles were divided between proac-
tive and reactive approaches. Proactive methods include historical logs, statistical failure
prediction, and reliability as a criterion to heuristic, meta-heuristic and classic optimiza-
tion algorithms. Reactive proposals are categorized into checkpoint (full, coordinated,
uncoordinated, incremental, and user level) and replication (active, passive, and primary).

Our proposal employs both reactive proposal categories together, i.e., checkpoint
and replication, but doesn’t specify which checkpointing method should be used (although
user-level and incremental might display better results). We propose the use of an active
non-synchronized replication and the determination of the FT approach based on each task
characteristics (a single task could employ one or both approaches). In contrast, related
works often choose the approach based on machine availability only [1]. Future works
include the use of proactive FT methods using, for instance, cloud node monitoring (e.g.
hardware sensors and network metrics) as components of a reliability coefficient which
will be used by the scheduler. Finally, there are some works that do not employ FT, but
instead consider how faults and reliability impact Quality of Service (QoS) parameters [4].

3. Modeling

This work targets heterogeneous (with CPU-GPU nodes) cloud based nodes with a com-
putational power, represented by a computing coefficient, executing an application rep-
resented by a set of tasks described as a Directed Acyclic Graph (DAG). Additionally,
we assume that each task’s input size and the total fixed number of computing nodes is
known, and tasks execution times are unknown1.

The FT model is based on three basic reactive approaches: checkpointing, replica-
tion and task migration, with the lemma: ”Checkpointing when viable, replication when-
ever possible and migration if needed”. The scheduling model is based on a priority
queue, in which the priority consists of the Degree of Dependency (DoD) of each task.
DoD is given by cumulative number of direct and indirect dependents of a task. At each
cycle, the scheduler peeks the head of the queue, and evaluates the task based on FT fac-
tors. Task’s data input size determines if the task will use checkpoint or redundancy when
compared to a predetermined threshold, that can be either user defined or calculated by a
statistical method. If a task is deemed not checkpointable, the scheduler will try to create
redundancy using replication across multiple machines. If no additional machine is avail-
able, it will execute the task on a single machine but tag it as “pending redundancy”. As
soon as a machine becomes available, tagged tasks are replicated. As a way to improve
FT, if there are available machines but no tasks left execute, the scheduler replicates al-
ready running tasks. This approach also reduces the overhead for running checkpointable
tasks since only one of the replicas will actively be performing checkpoints. Future works
include system monitoring, which will affect the machines that will be selected to run the
task, specially in the case where a task should be replicated but there is only one machine
available. We also plan to evaluate the use of cloud spot machines for the improvement
of tasks redundancy. Figure 1 shows the basic flowchart of the model.

1To assess our proposal, we developed a simulator that includes all the parameters above as well as
several others (checkpoint threshold, number of redundancies, etc.). The source code of the simulator is
available at: https://github.com/PedrooHR/FTScheduler-Sim/tree/ERAD2020.

https://github.com/PedrooHR/FTScheduler-Sim/tree/ERAD2020


Figure 1. Flowchart of the scheduler

4. Experimental Results
The evaluation of our approach was done using simulation. Where failures are modeled
after a Weibull distribution (modeled by a mean time between failures of 10 hours) [8],
when a machine fails, another is provided. To determine the basic checkpoint interval
we look at input data size, where interval = max{600, TaskT ime/(InputSize/40)}
seconds, where input size is given in MB, and 40 is the throughput of general purpose
HDD of Amazon in MB/s AWS2.

As input DAGs, we used the standard Pegasus Workflows3 which are a variety of
real application workflows with different characteristics. Experimental results were done
using ten random scenarios (pairs of faults and machines) using different FT approaches.
Figure 2 shows the relation between the makespan of each approach with FCFS Restarting
model (restart from beggining) as baseline. First plot shows the results for the original
workflows, while second plot shows the results for the workflows scaled by ten times (size
and time). Last column of each plot shows the geometric mean of the workflows for each
parameter. Error bars represent data confidence intervals.

Figure 2. Results for Original Workflows (top) and Scaled Workflows (bottom)

Plots shows mixed results for our proposal (ranging from best to worst) on ex-
ecution performance for the proposed algorithm. This occurs primarily because of the
variety of the characteristics in the workflows (for instance, montage has 11s and 13MB
average task time and size, while psmerge have almost 3h and 4TB). When analysing the
proposed algorithm performance, it is clear that different FT approaches yield different re-
sults. In general, the simplest approach of restart on failure provides better results because

2https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html
3https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator


some workflows are so short that the probability of failures is very low. To evaluate our
approach on a scenario in which tasks last longer (which would be the case in HPC sce-
narios), we scaled the execution times and data usage. Results can be seen in the second
plot on Figure 2. As tasks take longer to execute, the probability of a failure occursduring
execution is also higher. Additionally, our approach assumes there is a high correlation
between data usage and execution time, however only psmerge has this characteristic.

5. Conclusions
Scheduling and Fault Tolerance are two areas of paramount importance for HPC and
Cloud Computing. The definition of a single scheduling algorithm might not be desirable
since it might hinder an efficient fault tolerance approach (as constraints and objectives
can drastically change according to the job in execution). This work presents a novel algo-
rithm that, although still in development, takes into account scheduling and FT at the same
time using a mix of FT techniques which are chosen based on each task’s characteristics.

Simulations show that choosing the FT method based on the tasks can impact
makespan, and that the choices are influenced by each workflow characteristics. Future
works include the addition of failure probabilities as a choice factor in the scheduler, im-
proved load balancing and task placement optimization to reduce data transfers, evaluate
DAG metrics (e.g: diameter, communication ratio, etc.) to build correlations between
workflows and FT approaches, and evaluate the cost of regular and spot machines.

Acknowledgments
The authors are grateful to the Center of Petroleum Studies (CEPETRO-Unicamp/Brazil)
and PETROBRAS S/A for the support to this work as part of BRCloud Project.

References
[1] Mohammed Amoon. Adaptive framework for reliable cloud computing environment.

IEEE Access, 4:9469–9478, 2016.
[2] James Elliott, Kishor Kharbas, David Fiala, Frank Mueller, Kurt Ferreira, and Christian

Engelmann. Combining partial redundancy and checkpointing for HPC. In 32nd Intl.
Conference on Distributed Computing Systems, pages 615–626. IEEE, 2012.

[3] Moin Hasan and Major Singh Goraya. Fault tolerance in cloud computing environment:
A systematic survey. Computers in Industry, 99:156–172, 2018.

[4] Vahideh Hayyolalam and Ali Asghar Pourhaji Kazem. A systematic literature review
on qos-aware service composition and selection in cloud environment. Journal of
Network and Computer Applications, 110:52–74, 2018.

[5] Yashpalsinh Jadeja and Kirit Modi. Cloud computing-concepts, architecture and chal-
lenges. In 2012 International Conference on Computing, Electronics and Electrical
Technologies (ICCEET), pages 877–880. IEEE, 2012.

[6] Chesta Kathpal and Ritu Garg. Survey on fault-tolerance-aware scheduling in cloud com-
puting. In Information and Communication Technology for Competitive Strategies,
pages 275–283. Springer, 2019.

[7] Peter Mell, Tim Grance, et al. The NIST definition of cloud computing. 2011.
[8] Devesh Tiwari, Saurabh Gupta, and Sudharshan S Vazhkudai. Lazy checkpointing: Ex-

ploiting temporal locality in failures to mitigate checkpointing overheads on extreme-
scale systems. In 2014 44th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks, pages 25–36. IEEE, 2014.


