
Byron, an Event-Driven Microservices Framework
João F. L. Daniel1, Leonardo L. V. Oliveira1, Renato C. Ferreira1,

Eduardo M. Guerra2, Thatiane O. Rosa1,3, Alfredo G. vel Lejbman1

1Institute of Mathematics and Statistics – University of São Paulo (USP)
São Paulo – SP – Brazil

2Facoltà de Scienze e Tecnologie informatiche – Libera Università di Bolzano
Bolzano – Italia

3Federal Institute of Tocantins
Paraı́so de Tocantins – TO – Brazil

{joaofran,renatocf,gold,thatiane}@ime.usp.br, {leolanavo,guerraem}@gmail.com

Abstract. The rise of technological dependency made some requirements cru-
cial to online systems, such as availability, and scalability. The microservices
architectural style provides improvements to scalability and software maintain-
ability and has been broadly adopted. Although, microservices highlight trade-
offs between consistency and coupling level. This work presents Byron, an event-
driven microservices framework as a solution to mitigate these problems. It
implements a reactive architecture in an Event-Sourcing environment.

1. Introduction
The technological dependency, on behalf of people and companies, has risen lately –
online systems are constantly and massively accessed. For that, availability, reliability,
and scalability are features that become crucial for online systems [Wampler 2019].

To achieve such features, development teams have been adopting the microser-
vices architectural style. This style provides improvements to scalability, in terms of
development teams, and software deployment [Garrison and Nova 2018]. Furthermore, it
enhances continuous delivery, which improves the system evolution process.

A microservices-based system becomes more complex than a monolithic one
[Bonér 2017], because it highlights the trade-offs between data consistency and level
of coupling among parts, similar to Brewer’s Theorem [Sadalage and Fowler 2013]. To
reach decoupling, implementing microservices is not enough, it is necessary to adopt an
asynchronous communication model [Bonér 2017].

Thus, considering modern context requirements and the difficulties microservices
architecture offers, we created a framework to assist the process to build software. We
designed Byron as an event-driven microservices framework to help the implementation
of the asynchronous communication model – which provides decoupling and eventual
data consistency – and also to mitigate the time-consuming task of integrating other tools,
such as Docker, NATS-Streaming, and MongoDB.

2. What is Byron?
Byron is an event-driven microservices framework, i.e., it adopts the event as the core
abstraction in the communication model. It is written in TypeScript, generates GraphQL



APIs, uses MongoDB as local cache and Mongoose as Object-Document Mapping, and
adopts NATS-Streaming as the message broker. Byron is an open-source project and it
can be accessed in https://gitlab.com/byron-framework/cli.

2.1. Architecture
The selected way to explain Byron’s architecture is by following the C4 Model
[Brown 2011]. It has an approach that values abstractions on which it is possible to zoom-
in or zoom-out accordingly to the interest: more details or more context, respectively.

In this section, we present Byron’s architecture with narratives, beginning with
the description of the Context, the full zoomed-out perspective; it is followed by zooming
into the Containers; until reaching the full zoomed-in perspective, the Components.

[software system]
Mobile App

[software system]

the system being 
developed with 

Byron

Local App

[software system]
Website App

[software system]
External App

uses

[HTTP]

uses

[HTTP]

uses

[HTTP]

(a)

[software system]
Mobile App

[software system]
Local App

[software system]
Website App

[software system]
External App

uses

[HTTP]

redirects

[HTTP]

notifies notifies
publishes publishes

redirects

[HTTP]

uses

[HTTP]

uses

[HTTP]

[Container]
API Gateway

[Container: NATS-Streaming]
Message Broker

[Container: TS]
the component generated 

by the framwork

Byron Component
[Container]

existing 
microservices

Other MS

(b)

[Container]
Byron Component

redirects

[HTTP]

notifies

writes

publishes

[Container]
API Gateway

[Container: NATS-Streaming]
Message Broker

[Component: TS]
handles HTTP 

requests

API

[Component: TS]
handles event 
notifications

Sink

[Component: MongoDB]
handles event 
notifications

Cache

reads

(c)

Figure 1. (a) Context, (b) Containers, and (c) Components

Context: Byron is a framework to be used in general-purpose web systems – it has
no specialization in other tasks, such as machine learning, for instance.

Another characteristic is that Byron requires the whole Context system to imple-
ment the Event-Sourcing pattern [Richardson 2018]. That is, the microservice developed
with the framework must be placed within a system that adopts a message broker persist-
ing the state of the application as a sequence of changes, marked by events. Such a broker
must offer an API to subscribe to updates and also to publish events. Fig. 1(a) presents
this idea.

Containers: We call Byron Component the main object built by the framework
– despite the ambiguity, it is not a C4-Component, it is a C4-Container. It is meant
to implement a coherent set of well-defined operations of the domain, i.e., a Bounded
Context [Evans 2003].

A Byron Component adopts, for the external communication interface, a model
different than the adopted for internal communication. The Component exposes a
GraphQL API, a strongly-typed alternative to REST. As the internal communication, it
exchanges Domain Events [Richardson 2018] with the broker, publishing and listening
updates. Fig. 1(b) illustrates this level of abstraction.

Components: As shown in Fig. 1(c), a Byron Component is divided into three mi-
croservices. First, the API is responsible for exposing a GraphQL API and for handling
HTTP requests. When it needs data, the API queries the Cache, the second microservice



of a Byron Component. It is an in-memory database storing the most recent and relevant
data came from the broker. This storage provides decoupling between components be-
cause, in case of failure elsewhere, a Byron Component has its reliable source of data,
even if they are slightly outdated – because with that, any request can be answered with
some data. The third is the Sink, responsible for listening to events of interest in the
broker and then updating the Cache accordingly.

This set of microservices implements a pattern called Persistent Storage
[Richardson 2018]: it extracts the Byron Component state into a separated process. This
practice provides data consistency among copies of the same microservice – in case of
scaling up. Furthermore, the segregation between API and Sink around the Cache imple-
ments CQRS [Richardson 2018], providing better scalability to them.

2.2. Implementation with Byron
Byron works in a declarative way. It uses a Domain Specific Language to centralize all
declarations into a single file, called schema.yaml. It extends GraphQL definitions for
the API – with its own types, inputs, and commands – to wrap also all event-handling
functions – called handlers – and functions related to lifecycle – called hooks.

The online documentation, hosted at https://byron.netlify.com,
presents further information about Byron technical details.

3. The use of Byron and similar tools
Byron is a tool to implement general-purpose business logic. Its architecture supports
contexts often related to layers that are closer to external clients.

The adoption of microservices is a measure mostly driven by team scalability.
This framework is a tool to implement, for instance, a new service within an international
e-commerce platform that already adopts microservices, because the company has several
development teams. A counter-example is a new start-up building a functional prototype
to validate its business model. In that case, as it is still a small company, the adoption of
microservices becomes overwhelming.

Event-Sourcing inspired Byron’s architecture, which is event-driven. Hence, it
offers eventual data consistency. That makes the adoption of this framework more suitable
in an eventually consistent tolerant environment – for instance, a chatting system.

There are other tools available that work similar to Byron in terms of language,
approach, communication model and architectural decisions. Table 1 compares Byron
with NestJS (https://nestjs.com/) and Moleculer (https://moleculer.
services/).

Different from Byron, NestJS is not a microservices-exclusive framework. It of-
fers two modes: a monolithic and a microservices-oriented. When it comes to the latter,
it does not offer a defined architecture, it considers a microservice an application that
simply does not uses HTTP requests. Along a software evolution, when it follows a de-
fined architecture, the project benefits from having ground base to decision making and
risk/cost analysis. Since Byron defines an architecture, it stands out.

Moleculer has a much more fine-grained approach to microservices, in which
the division happens in a function-level. This approach is more similar to the server-



Byron NestJS Molecular
Language TypeScript TypeScript Node.js
Approach declarative imperative imperative

Comm. Model
async yes yes yes

orientation events events, messages messages
protocol pub-sub pub-sub, req-res req-res

Architectural Decisions defined architecture no architecture no architecture

Table 1. Comparison between Byron, NestJS, and Molecular

less paradigm, which injects function objects into machines already with servers running,
as this layer of code was part of the infrastructure itself.

4. Conclusion and Future Work
In this work, we presented Byron, an event-driven microservices framework. It is a frame-
work to develop general-purpose business logic adopting the microservices architectural
style, and it works as a solution to provide data consistency and decoupling between parts.
Its successful results are proof-of-concept.

Byron is under constant development seeking improvements and can be enhanced
with some future works. We thought of the following:

• experimenting with a system implemented with Byron running under critical sce-
narios,

• creating extensions to integrate other cloud-computing platforms,
• providing more flexibility of its architecture to create a wider diversity of Byron

Components, and
• experimenting with the developer experience with the framework to better under-

stand the value provided by the well-defined architecture.

References
Bonér, J. (2017). Reactive Microsystems - The Evolution of Microservices at Scale.

O’Reilly, 1st edition edition.

Brown, S. (2011). The C4 model for visualising software architecture.

Evans, E. (2003). Domain-Driven Design Tackling Complexity in the Heart of Software.
Technical report.

Garrison, J. and Nova, K. (2018). Cloud Native Infrastructure - Patterns for Scalable In-
frastructure and Applications in a Dynamic Environment. O’Reilly, 1st edition edition.

Richardson, C. (2018). Microservices Patterns. Manning, 1st edition edition.

Sadalage, P. J. and Fowler, M. (2013). NoSQL distilled - a brief guide to the emerging
world of polyglot persistence. Addison-Wesley, 1st edition edition.

Wampler, D. (2019). Fast Data Architectures for Streaming Applications - Getting An-
swers Now from Data Sets That Never End. O’Reilly, 2nd edition edition.


