Towards a Scalable IIoT Solution for Factory Monitoring

Igor S. de Brito', Antonio Gabriel da S. Fernandes!,
Guilherme G. de F. Salvo,!, Rafael S. R. Alves', Thomas E. Maia',
Fernanda E. C. Chaves!, Marcelo S. Previti', Flavia Pisani', Juliana F. Borin'

'Universidade Estadual de Campinas (UNICAMP) — Campinas, Sao Paulo, Brazil

igor.brito@students.ic.unicamp.br, {fpisani,juliana}l@ic.unicamp.br

Abstract. With the declining cost of computer chip production, they have been
increasingly integrated into everyday appliances and devices, giving rise to the
Internet of Things. In an industrial context, these devices improve control and
productivity in a production line. This paper evaluates the scalability of connec-
tions of those devices to an edge gateway, as well as the scalability of connec-
tions of edge gateways to a server platform in a simulated industrial setting.

1. Introduction

Initially used in 1999 [Rose et al. 2015], the term Internet of Things (IoT) refers to
devices connected to each other in different environments, such as residential, com-
mercial, and industrial. Furthermore, there is currently a great process of automation
through intelligent monitoring, especially of the machinery present in factories, giving
rise to what is called the fourth industrial revolution (Industry 4.0) [Boyes et al. 2018].
This term is considered by some authors as a synonym for Industrial Internet of Things
(IToT) [Hermann et al. 2016]. More clearly, Hermann et al. define Industry 4.0 as a col-
lective term for technologies and concepts of organization of the production chain, with
the monitoring of physical processes and decentralized decision-making to increase in-
dustrial efficiency, productivity, security, and transparency. The term IoT similarly refers
to modules that communicate and cooperate with each other and with humans in real-time.

Therefore, aiming to improve the productivity of a factory, it is possible to estab-
lish a reference architecture of IloT scenarios commonly organized in three abstraction
layers: edge, platform, and enterprise. The edge layer includes sensors, actuators, and
controllers connected via the local network to an edge gateway. This edge gateway con-
nects to the platform layer, which is responsible for receiving the data collected in the
edge layer, transforming, and processing it. Finally, the enterprise layer implements the
applications, business logic, and user interfaces [Salhaoui et al. 2019].

We can implement a solution following this architecture in already-existing fac-
tories. For instance, the edge layer can be created by equipping production lines with
small Wi-Fi-capable sensors that collect information about each machine (e.g., electric
current, temperature, vibration). In a factory with many production lines, each line can
have its own dedicated edge gateway, responsible for performing lightweight operations
(e.g., parsing, filtering, and aggregation) and then sending the clean data to the platform
layer. The platform layer can be implemented with approaches varying from an on-site

This paper’s results were obtained through the project “An intelligent IloT platform for factory moni-
toring,” funded by Samsung Eletronica da Amazonia Ltda., in the scope of the Informatics Law #8.248/91.

server to an external cloud, depending on the solution’s processing and security require-
ments. By centralizing the data from all production lines, this layer can perform more ro-
bust data analysis operations considering the whole context of the factory.

This paper analyzes the scalability of a solution that implements the edge layer
with a Raspberry Pi acting as a gateway dedicated to a production line and implements
the platform layer with an on-site server.

2. Edge Layer Scalability

In this section, we assess the performance of a Raspberry Pi gateway receiving messages
at increasing rates. For each value of messages per second, starting at 100 up to 1600,
we measured the CPU and RAM usage, the temperature of the Raspberry Pi’s System
on a Chip (SoC), and the overall message throughput at the gateway. To do so, a Python
script running on a separate computer sent a specified number of messages per second
for one minute. The messages were sent via Wi-Fi using MQTT, a lightweight, publish-
subscribe network protocol, to a broker running on the gateway. They were then passed
on to a client, also running on the gateway, which pre-processed them, checking if the
current message received for each topic differed from the previous one, and logged them
in a CSV file. We executed the tests five times for each value of messages sent per second.
The results presented are the average and standard deviation of these executions.

2.1. Experimental Setup

In this experiment, we used a Samsung X355 laptop with 16 GB of RAM and an Intel 17
10th Gen processor to run the publisher client. The gateway used to run the subscriber
client was a Raspberry Pi 4 Model B with 8 GB of RAM and a 32 GB SD Card. Both
devices were connected to an AX3000 Dual Band Network Gigabit router in the same
2.4 GHz Wi-Fi network. We monitored CPU usage, RAM usage, and SoC temperature
using the RPi-Monitor' executing in the gateway.

We used the Paho MQTT module? to implement the publisher and subscriber
clients. This module implements a receiving buffer to store incoming messages until they
are processed, allowing us to run tests with a higher count of messages per second than the
maximum throughput of the Raspberry Pi. We employed the Eclipse Mosquitto MQTT
broker® and opted to execute it on the gateway instead of a separate device to reduce the
communication overhead between the subscriber and the broker.

2.2. Experimental Evaluation

In Figure 1a, we can see the throughput of the messages received by the gateway. Initially,
the gateway can keep up with the influx, but it reaches its limit at ~650 messages/second,
when it starts to delay processing all the messages. Still, no information is lost due to the
Paho MQTT client buffer that stores all the messages received by the broker.

In Figure 1b, we can see the CPU load increasing as the rate of messages goes up.
However, even at maximum throughput, the Raspberry Pi’s CPU usage was never close to
100%, meaning that the hardware’s processing power was never used at its total capacity.

Thttps://github.com/XavierBerger/RPi-Monitor
https://www.eclipse.org/paho
3https://mosquitto.org

Thus, it might be possible to improve the gateway’s performance using multi-threading
techniques. The RAM usage remained stable during the tests, consistently averaging
around 325 kB, which is almost negligible to the Raspberry Pi’s 8 GB of RAM. As seen
in Figure Ic, the temperature rises as the rate of messages increases but never reaches a
dangerous level for the system. We note that no cooler was used during the tests.

700 100 80

iiiiiiiiii -

600 °

w
8
3
°

o

=

IS
8
8
°

Throughput (messages/s)

w
8
3
°
CPU usage (%
"
s
—e—i
—o—i
o
]
—e—

o PP LSS LSO PP LS LSS

LS LS LS LSS S S S LS LS SL S

O R PN N RN AN N OO MR L M
)

Messages sent (messages/s

(a) Gateway throughput. (b) CPU usage. (c) SoC temperature.

Figure 1. Edge layer experimental results.

3. Platform Layer Scalability

In this section, we aim to test the performance of a platform layer server and evaluate the
use of the HTTP and MQTT communication protocols for connecting it to an edge gate-
way. First, we systematically increased the size of a transmitted payload, measuring the
time spent during the dispatch and verifying the receipt of data on the server platform.
Then, we simulated the accumulation of 65 000-byte payloads on the device for burst
transmissions, sending a new request only after the previous request concluded. The re-
sults presented in this section are the average and standard deviation of the measurements
made using 100 messages for each payload size.

3.1. Experimental Setup

We employed two laptops to carry out the experiments: one with 4 GB of RAM and an
Intel i3 3rd Gen processor running the ThingsBoard* application acting as the server, and
the other with 8 GB of RAM and an Intel i5 8th Gen processor acting as the gateway.

To emulate the gateway sending messages to a server, we developed a Python
script to send fixed-sized payloads in sequence, using either HTTP or MQTT, then check
if the request succeeded. The server has a PostgreSQL database, and we implemented a
memory queue service for the messages.

3.2. Experimental Evaluation

In our experiments, we observed that MQTT has a smaller upper boundary for its payload
size than HTTP due to the maximum allowed size of a topic string. Thus, as shown in
Figure 2a, the only option for sending payloads above 65 507 bytes is HTTP, which was
able to transmit up to 13 107 200 bytes in a single message, albeit at the cost of a longer
transmission time. In Figure 2b, we noticed that HTTP’s transmission time increases more
rapidly than MQTT’s as the number of messages grows. Despite having a higher initial
cost, MQTT scales better when messages are accumulated to be transmitted in bursts, as

“https://thingsboard.io

it can reuse a single connection to send multiple messages. Therefore, HTTP performs
better with up to 20 messages in a burst scenario, but above that, MQTT outperforms it.

8 wMmaQrT 1 & wmarr
g HTTP @ HTTP

o

time (s)
PO
O
E; tion Time (s)
IS o
=
[]
I
—
—
——

3
&2 %21
o°°°°c
1] e e 0o 0000000 l{; 1]
ouuuunuuu@%ﬁ%%%% o] m

102 10° 10* 10° 10° 107 0 10 20 30 40 50 60 70 80 90 100
Data size (b) Number of Messages

(a) Time vs. payload size. (b) Time vs. payload accumulation.

Figure 2. Platform layer experimental resulits.

4. Conclusions and Future Work

Based on our experiments, we conclude that our Raspberry Pi edge gateway solution re-
mains stable when receiving large amounts of data, with a maximum throughput of ap-
proximately 650 messages/second. This is suitable for an IIoT scenario where a gateway
receives the data collected in a production line. In the future, we intend to investigate
further the impact that the Paho MQTT message buffer, the network throughput, and the
gateway processing power may have on this bottleneck. Furthermore, considering that the
CPU usage never reached 75% and that the hardware temperature remained at acceptable
levels in all tests, we plan to explore multi-threading in the gateway. Lastly, given that the
memory usage was low, it could be interesting to explore the use of cheaper Raspberry Pi
models with less RAM than the one we employed in these experiments.

Moreover, we observed that the server platform presented good performance, with
MQTT being suitable for an IIoT scenario where a gateway sends bursts of small mes-
sages to the server. We emphasize that we used the basic default installation configura-
tions for ThingsBoard, and the experiments were conducted on a personal laptop instead
of a more powerful server machine. Therefore, possible next steps are installing the plat-
form on a server, adding robustness to the system by using a Cassandra database and
Kafka messaging service, and simulating a larger number of gateways. This way, we can
analyze the platform’s performance in a more suitable setup for real industrial environ-
ments and consider the impact of factors other than the data transmission time.

References
Boyes, H., Hallaq, B., Cunningham, J., and Watson, T. (2018). The industrial internet of
things (IloT): An analysis framework. Comput. Ind., 101:1-12.

Hermann, M., Pentek, T., and Otto, B. (2016). Design Principles for Industrie 4.0 Scenar-
i0s. In Proc. 49th HICSS, pages 3928-3937.

Rose, K., Eldridge, S., and Chapin, L. (2015). The Internet of Things (IoT): An Overview
— Understanding the Issues and Challenges of a More Connected World.

Salhaoui, M., Guerrero-Gonzalez, A., Arioua, M., Ortiz, F. J., El Oualkadi, A., and Tor-
regrosa, C. L. (2019). Smart Industrial IoT Monitoring and Control System Based on
UAYV and Cloud Computing Applied to a Concrete Plant. Sensors, 19(15).

