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Abstract. In this work, we propose a loop transformation to improve performance
and energy efficiency of ensembles. We compare the performance of our technique
with three other strategies for improving energy efficiency and throughput in
data stream classification using six state-of-the-art ensemble algorithms and four
benchmark datasets. Our results show that software strategies can significantly
reduce energy consumption. Mini-batching improved energy efficiency by 96%
on average and 169% in the best case. Likewise, mini-batching with loop fusion
improved energy efficiency by 136% on average and 456% in the best case.

1. Introduction
Edge Computing (EC) is a paradigm that moves the services and utilities of cloud comput-
ing closer to data sources (e.g., sensors) [Khan et al. 2019]. Ensembles of classifiers are
examples of ML techniques that demonstrated noticeable accuracy for the classification of
data streams [Gomes et al. 2017] by using several weak learners which can produce more
accurate results. Mini-batching is a strategy that groups data instances in a data stream, to
be processed together. This technique demonstrated to improve performance, and energy
efficiency of parallel implementations of bagging ensembles for the classification of data
streams [Cassales et al. 2022]. In this work, we propose an improvement to the original
mini-batching strategy, which applies loop transformations to improve the performance
and energy efficiency of ensembles of classifiers. We compare the performance of our
technique with three other strategies: pure mini-batching, Dynamic Power Management
(DPM), and Voltage-Frequency Scaling (VFS).

2. Bagging ensembles for stream processing
Learning algorithms have to cope with dynamic environments that collect potentially un-
limited data streams in many applications. Formally, a data stream S is a massive sequence
of data elements x1, x2, . . . , xn that is, S = {xi}ni=1, which is potentially unbounded
(n →∞) [Silva et al. 2013]. Stream processing algorithms have additional requirements,
which may be related to memory, response time, or a transient behavior presented by the
data stream. In this context, one of the most widely used algorithms is the Hoeffding Tree
(HT) [Domingos and Hulten 2000], an incremental tree designed to cope with massive data
streams. Despite being able to make splits with limited data, its limitations are exposed
when attempting to model complex learning problems with a single tree. To overcome this
issue, a popular strategy is to ensemble several models using Bagging [Breiman 1996].
Bagging is a ML technique that involves creating multiple models by training them on
different subsets of the original training data, and then combining their predictions to make
a final prediction.



3. Improvement mini-batching with loop fusion for energy saving
The algorithm 1 shows the processing of a mini-batch. It performs the classification (lines
2-6) and training (lines 7-16). The line 3 distributes the mini-batch to each trainer. Line
4 obtains the votes for each trainer. Votes are the predictions of each model and are
aggregated in line 6. The loop in line 2 can be sequential or parallel according to the
characteristics of the application (e.g., classifiers with small number of operations may
disable the parallelism). Then, each trainer will iterate over all the mini-batch instances
to calculate the weight, create the weighted instance, and train the classifier with this
weighted instance (lines 7-12). ARF, SRP, and LBag, exclusively, will execute lines 13-15
as a local change detector for each classifier in the ensemble. In OBAdwin, lines 13-15
would be outside the parallel section, as the change detection is a global operation. Finally,
in line 17, the mini-batch is emptied to begin accumulating again.

The algorithm 2 merges the loops for the classification and training in one loop
(loop fusion). This improves cache reuse by performing both the classification and training
on a single pass. In this case, the data structures will be loaded in cache and reused for
classification and training operations.

Algorithm 1 process minibatch (...) // As proposed in [Cassales et al. 2021]
1: Input: mini-batch B
2: for each trainer Ti in trainers T do in parallel ▷ The classification loop
3: Ti.instances← B
4: votesi ← Ti.classify(Ti.instances)
5: end for
6: E.compile(votes)
7: for each trainer Ti in trainers T do in parallel
8: for each instance I in Ti.instances do ▷ The training loop
9: k ← poisson(λ)

10: W inst← I ∗ k
11: Ti.train on instance(W inst)
12: end for
13: if change detected then
14: reset classifier
15: end if
16: end for
17: B.clear()

4. Experimental evaluation
Our testbed is composed of four dedicated machines in an isolated network: (i) a workload
generator reads the dataset and delivers its instances as a data stream at controlled rates; (ii)
a data stream processor implemented by a Raspberry Pi 3 Model B; (iii) a high precision
power sensor Yokogawa MW-100 collects information in real-time from the Power; and
(iv) a data logger collects all experimental data for analysis.

5. Evaluating throughput and energy efficiency
We compare our new strategy with three other strategies: (i) the Core Limiting (CL) limits
(i.e., pin) the execution of the application to a subset of the available processing cores. (ii)



the Voltage-Frequency Scaling (VFS) strategy, which allows to reduce clock frequencies
and voltages to save energy; (iii) the pure Mini-Batching (MB). A load generator sent
instances at the maximum rate the processor can handle while measuring the total makespan
and energy consumption for the 6 algorithms OzaBag, OBagASHT, OBADWIN, LBag,
ARF, and SRP to process the entire 4 datasets. The results in Figure 1 show the energy
consumption in average Joules Per Data Instance (JPI), expressed by the mathematical
formula JPI = E

n
, where n is the number of processed instances and E is the amount

of energy expended during processing, while the throughput is expressed as Instances
Processed Per Second (IPS) with the following equation IPS = n

s
, where n is the number

of processed instances and s is the processing time. The software strategies (MB and
MB-LF) presented higher throughput than the hardware strategies. As expected, the novel
strategy (MB-LF) outperformed the pure mini-batching (MB) in throughput and energy
efficiency. Mini-batching, especially with loop fusion, spends fewer processor cycles per
instance, which results in lower energy consumption per instance.

Algorithm 2 process minibatch(...) // New version with loop fusion
Input: mini-batch B

1: for each trainer Ti in trainers T do in parallel
2: for each instance I in B do ▷ Classification and training into a single loop
3: votes[i, j]← Ti.classify(B[j])
4: k ← poisson(λ)
5: Winst ← I ∗ k
6: train on instance(Winst)
7: end for
8: if change detected then
9: reset classifier

10: end if
11: end for
12: E.compile(votes) ▷ Ensemble compile votes
13: B.clear() ▷ Batch clean

6. Conclusion
Our experiments show that mini-batching outperforms the hardware strategies in terms of
throughput and energy efficiency in all of the tested cases. Pure mini-batching improved
energy efficiency (i.e., the amount of work performed by the same energy consumed) by
96% on average and 169% in the best case. Likewise, mini-batching with loop fusion
(proposed in this paper) improved energy efficiency by 136% on average and 456% in the
best case. Furthermore, software strategies support better control of the application of the
optimizations without affecting other applications that execute on the same hardware. As
future work we evaluate impact in predictive performance and efficiency latency and plan
to investigate adaptive mini-batching settings to balance latency, energy consumption and
accuracy under varying loads.
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Figure 1. Results in Joules per instance (JPI), and instances per second (IPS).
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