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Abstract. Persistent Memory (PM) has recently resurfaced with the advent of
new technologies that make it a competitive option in terms of performance
compared to traditional storage, adding the benefit of durability. Because it
is byte-addressable, the use of PM is similar to that of volatile RAM (DRAM).
However, there are some differences related to data consistency and read/write
latency, which makes it necessary to have special memory allocators. This paper
presents an initial performance analysis of the impact of two persistent memory
allocators, PMDK and Ralloc, using three typical data structures, namely, i)
Linked List, ii) Skip List, and iii) Hash Map. Although the study is in its initial
phase, we could observe the impact of PM allocator in performance.

1. Introduction
Persistent memory (PM) is a byte-addressable memory technology, similar to typical
volatile RAM (DRAM) [Baldassin et al. 2021]. Its use has recently become popular since
these memories share the same data bus as the DRAM. Moreover, Intel have recently
commercialized persistent devices (Optane DC) [Tyson 2019] and the CXL (Compute
Express Link) interconnect [Jung 2022] has added support for PM. Even though it is non-
volatile storage, which is typically slower, current PM performs considerably better than
storage devices such as solid-state drives, due to lower read/write latencies. For instance,
PM read latency can be as low as 350 nanoseconds, compared to 10,000 nanoseconds
for an SSD [Izraelevitz 2019]. This characteristic makes PM a viable option for high-
performance computing that requires data durability with a relatively low cost in terms of
performance.

Despite the benefits of persistent memory, optimally using it is a non-trivial task.
Unlike DRAM, the storage space is much higher. However, the durability characteristic
makes it necessary to guarantee data consistency in case of a power loss. Therefore, pro-
grammers are required to guarantee that the stored data can be adequately recovered and
accessed following a system crash. Aside from typical store instructions, cache flushes
must be regularly executed to ensure that persistent data is not lost during a sudden sys-
tem failure. A persistent memory allocator must specially consider how allocated data
will be recovered in case of system crashes (e.g., power failure). Several allocators have
been proposed to date [Scargall 2020] [Bhandari et al. 2016] [Cai and Wen 2020], with
the main differences in memory layout, metadata used for data recovery, and handling
of memory deallocation and release (e.g., using garbage collectors). However, it is still



not clear how the different design choices affect the overall performance. In this short
paper, we show initial performance results using two well-known persistent allocators:
1) PMDK (Persistent Memory Development Kit), an allocator implemented by Intel and
part of its development kit for programming with PM [Scargall 2020]; and 2) Ralloc, a
state-of-the-art allocator [Cai and Wen 2020]. In this initial report we make use of three
simple data structures: a linked list, a skip list, and a hash set. We show how the allocator
used plays an important role in performance, particularly during deallocation, with the
number of operations per second going between 4x and 20x higher with Ralloc compared
to PMDK.

2. Persistent Memory Allocators
Dynamic memory allocation is among the most expensive and common operations in soft-
ware development. Studies conducted with a group of heap-intensive applications have
shown that, on average, 30% of the total execution time is spent on dynamic memory
management [Tiwari et al. 2010]. Compared to traditional ones, PM allocators have fur-
ther requirements, such as the need for data consistency (allocator metadata needs to be
persistent) and different design tradeoffs. For instance, some designs are optimized to re-
duce write endurance of PM [Yu et al. 2015]. In this initial study, we concentrate on two
important persistent allocators: PMDK [Scargall 2020] and Ralloc [Cai and Wen 2020].
In the following we provide a short introduction, highlighting the main characteristics of
each allocator.

PMDK: PMDK is a set of libraries developed by Intel [Scargall 2020] for C and C++
that enable persistent memory usage, including allocation and deallocation. In order to
use the persistent memory space with PMDK, the user must first allocate a root pointer,
from which the applications’ memory region will be reachable. PMDK separates the
entire memory region into zones of specific size, and each zone into chunks of variable
size. For allocation, a blocks’ size is rounded up to match the next size of a free list.
The malloc method provided by PMDK finds a free block and attaches it to previously
allocated blocks. This operation occurs atomically to avoid possible memory leaks during
a system crash. Additionally, redo and undo logs are kept for allocation atomicity and
transactional snapshotting of a memory region, respectively. For deallocation, the free
method gets the pointer to the block and puts it back into the free list. To manage the free
address space of the application, PMDK maintains in the DRAM a vector of pointers to
persistent memory blocks of specified size.

Ralloc: Ralloc is a persistent memory allocator developed by Wentao et al.
[Cai and Wen 2020], which reorganizes the typical memory layout to enable recoverabil-
ity. Ralloc separates memory in superblocks of the same size, mapped in a single region
to keep the applications’ data. To guarantee consistency and recoverability, two more re-
gions are created in the address space to maintain metadata of superblocks size, state, and
allocated data types. In the main memory of the application, superblocks are divided in an
array of subblocks, where a free/allocated identifier is kept, and a free subblock points to
the next free subblock on the list. Each superblock holds a state that indicates if such su-
perblock is free, fully or partially allocated. Inside the actual memory region, objects are
arranged according to their sizes by keeping blocks of equivalent sizes inside the same su-
perblock. Therefore, during the allocation of an object of a specific size, a superblock for
such a size class is selected, and a pointer for the next free block inside the superblock is
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Figure 1. Add (a) and Update (b) operations per second for linked list, skip list,
and hashset.

returned. For deallocation, a simple change from “full” to “empty” in the state descriptor
of the block is required. The memory reclaim process consists of pushing the block from
a “full” or “partial” list to a “partial” or “free list”, according to the state transition of the
block. Superblock reclamation is delayed during a malloc operation when no superblock
is available for allocation. This causes the deallocation process to be much faster.

3. Experimental Setting and Performance Results
To carry out the performance analysis, we use three data structures on which delete and
add operations require allocation and deallocation, and a search operation only reads
from persistent memory. The memory access patterns depend on each data structure used
as follows. A Linked List is a linear structure in which each element points to the next
and/or the previous one. For this experiment, we use a simple linked list; in a Skip List,
similar to linked lists, each of the elements points to the next one. However, these lists tend
to be more efficient search operations since the list is arranged in levels that allow ordering
the data; a Hash Set is a structure that facilitates the search for non-repeating elements
by arranging them in semi-ordered groups (called buckets) using a hashing mechanism.

The used data structures are allocated exclusively in PM. Other metadata (volatile)
used during execution is allocated in DRAM. Applications were executed in a machine
powered by an Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz processor with 196GB
of RAM, and 128GB of Intel Optane DC Persistent Memory. We compare the PMDK
and Ralloc allocators and used LRmalloc [Leite and Rocha 2019], a DRAM allocator,
as a performance reference (red line in the figures). Performance results are presented
in terms of the number of operations per second executed by each application for the
respective data structures. All sets are initialized with 256 randomly generated elements
of integer type. Each application is executed 10 times with a 10 seconds duration each
time. Results of each run are averaged to obtain the number of ops per second (ops/sec).

The top row of Figure 1 shows the number of add operations per second per-
formed for each set. Each element is randomly generated and added if the value does not
previously exist in the set. As can be seen in the figure, the difference between Ralloc
and PMDK is large, particularly for the linked list, where 128% more set add operations



are performed per second using Ralloc than PMDK. For the hash set, 16% more opera-
tions are executed using Ralloc, compared to PMDK. However, a particular case occurs
with the skip list, wherein PMDK outperforms Ralloc. PMDK performs 16% more add
operations than Ralloc. This is possibly a consequence of the memory layout in PMDK,
which benefits skip list lookup over Ralloc.

The bottom part of Figure 1 shows the number of update operations performed
per second. This operation is composed of additions and removals of an element in the
set (with equal probability). A wider performance difference can be seen between PMDK
and Ralloc, with Ralloc performing better for all the studied sets. In the case of Ralloc, the
garbage collector allows delayed memory recovery. As Rallocs’ implementation is based
on LRmalloc, the difference in performance is expected to be solely given by the differ-
ences in latency between PM and DRAM. In most of the tests, Ralloc behaves relatively
similarly to LRmalloc, making it evident that PM is competitive for high-performance
computing.

4. Conclusions
Our initial results show that persistent memory allocators play an important part in per-
formance. Although in general Ralloc displayed much better results, we also spotted a
scenario in which the PMDK provided better results. We are now checking more pre-
cisely the causes for the performance gain of PMDK with the skip list (add operations)
and conducting an evaluation on more representative benchmarks (real cases), as well as
adding comparisons with other available PM allocators.
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