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Abstract. OpenMP is a well-known tool for parallelizing code in a directive-
based programming model. While it has been extended to include support for
offloading for devices such as GPUs, multi-gpu programming using data map
directives requires redundant data allocation and non-intuitive data synchro-
nization. This paper studies an alternative implementation of a CUDA-OpenMP
hybrid kernel using native Unified Virtual Addressing memory pointers in an
OpenMP target kernel.

1. Introduction
OpenMP has been a staple in parallel programming for years thanks to its easy acceler-
ation of existing algorithms in a directive-based programming model. This model was
extended to encompass device offloading in version 4.0 with the introduction of the target
directive, which aims to deliver seamless performance and simplicity seen in CPU-based
parallelization for manycore devices such as GPUs, and is accompanied by the target
data map pragma for easy data migration between host and Device. Although the data
map directives show great results for single-gpu implementations, its use in multi-gpu
domain decomposition lacks the ability to mapping multiple sections of an array into dif-
ferent devices. For this reason, more device memory than actually necessary is required,
and handling synchronization and data consistency of halo regions between iterations of
stencil calculations is error-prone. Alternatively, a developer may implement domain de-
composition by explicitly allocating and copying memory via OpenMP’s other functions.
While this method may be more efficient, it demands more programming effort, requiring
proper synchronization in order to produce correct results.

This paper shows how the use of Nvidia’s Unified Virtual Addressing as a means
of programming domain decomposition of stencil-style OpenMP GPU kernels, such as
the acoustic wave simulation used in this paper, can make implementation easy and lower
the required on-board device memory when taking advantage of a multi-gpu environment.

2. Acoustic wave simulation
Acoustic wave simulation models are commonly used in scientific applications such as
seismic imaging, where its kernel is widely used in Full Waveform Inversions, a method
that aims to reconstruct images of material layers underground by analyzing simulated
data against real-world measured values. The wave propagation can be modeled by the
elastic wave equation, a second-order differential equation that describes particle dis-
placements [Virieux and Operto 2009]. This equation can be simplified by assuming an



isotropic medium, constant density, and by neglecting shear strains. This simplified ver-
sion can be written as follows:
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1 can be discretized using second-order in time and variable spatial order (even, varying
from 2,. . . ,20). Finally, the equation reduces to:
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This equation can be implemented as a stencil computation in software, which is very
computationally intensive and a strong candidate for execution in manycore environ-
ments, as the high number of relatively simple calculations suits devices such as GPUs.

3. Methods

(a) OpenMP model
(b) UVA model

Figure 1. Memory allocation for the two strategies.

Our experiment is built upon a wave propagation simulator called Miniwave, a
subset of a larger project named Simwave [Freire de Souza et al. 2022], which imple-
ments the forward equation in self-contained external kernel functions. These functions
are implemented in C using many different techniques and are incorporated by a python
front-end. One such technique is an OpenMP target single-gpu implementation, which is
used as a basis for our tests.

Our goal was to study the use of CUDA’s native memory functions in an OpenMP
target kernel. The chosen one for our testing was Unified Virtual Addressing (UVA), a



technology in which memory pointers can be indiscriminately accessed either by the host
or by any device present in the system. With UVA, data location is handled by the runtime
driver, and prefetching and preferred locations may be hinted at via CUDA functions by
the developer to improve performance [Nvidia 2023].

To benchmark the strategies, we first implemented domain decomposition using
OpenMP’s data map directives, which creates entire copies of the arrays onto every de-
vice, following the API specification [OpenMP 2021]. Synchronization was necessary in
for exchanging halo data, which was implemented using the data update pragmas between
iterations. One host thread was created for each device, being responsible for defining the
correct parameters for each device. Our UVA implementation was made using cudaMal-
locManaged function calls following the Runtime API guidelines [Nvidia 2023]. This
function allocates memory and creates virtual pointers accessible from any device. Data
present on the host was copied onto these newly-allocated arrays and passed on to the
OpenMP kernel by the is device ptr() clause. Implementing this strategy was simple, as
accessing data from neighboring devices is handled by the runtime driver, being trans-
parent to the developers. Much like in the OpenMP implementation, a host thread is
responsible for defining starting and ending array positions for each device.

As exemplified in figure 1, in the OpenMP data map model, each GPU must have
enough memory available for a copy of the entire grid, requiring more overall available
memory than is actually needed, while in the UVA model, each GPU only stores its own
local sub-domain, but can access halo data from its neighbors during execution.

4. Results

Space Order Size UVA OpenMP

SO = 2
Size = 256 4,66 4,31
Size = 512 15,01 17,45
Size = 1024 92,99 96,54

SO = 4
Size = 256 5,58 6,31
Size = 512 20,73 24,65
Size = 1024 144,67 135,6

SO = 8
Size = 256 8,31 10,89
Size = 512 31,93 37,07
Size = 1024 261,45 212,68

Table 1. Execution time for different grid sizes and space orders

The tests were conducted on a computing node equipped with 4 NVidia v100
GPUs connected via NVLink. As shown in Table 1, both implementations produce sim-
ilar execution times and are proportionately affected by increasing grid sizes, while the
OpenMP-only version is more negatively affected by bigger stencil radii. This is due to
the slow synchronous transfer among devices, which halts execution after each iteration
while devices wait for data to be updated.

Figure 2 shows how the UVA implementation performs consistently better than
its data map counterpart, with lower execution times. Performance differences increase
with bigger number of iterations, while the amount of GPU memory required per device
increase much faster on the OpenMP-only version, which may limit grid sizes on systems
where the GPUs are equipped with less memory.



(a) Execution time (b) Device memory required

Figure 2. Execution time for varying grid sizes with stencil radius = 2 (a) and
amount of device memory required (b) in both strategies

Implementing both versions require attention in different areas. The data map
method demands care when synchronizing data between iterations, as reading the wrong
values due to improper synchronization can produce wrong results; while the UVA version
requires a great deal of optimization with data prefetching and memory location advising
to perform well, but is much less error-prone.

5. Conclusion
Integrating Nvidia’s UVA memory pointers into an OpenMP target GPU kernel offers
advantages when it comes to performance and ease of implementation. Utilizing native
device memory functions can offer many tools that allow for easy implementation of
domain decomposition. Although execution times were similar between both methods
shown, future work should be conducted exploring other methods to further improve on
performance, as many different native GPU data management tools are available and may
be able to produce better results for stencil calculations in multi-gpu environments.
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