Simplifying HPC Application Development with OpenMP
Cluster and Unified Memory

Jhonatan Cléto!, Hervé Yviquel', Marcio M. Pereira', Guido Aratjo'
nstitute of Computing — State University of Campinas (UNICAMP)
j256444Q@dac.unicamp.br

Abstract. As accelerators such as GPU and FPGA become more common in
HPC systems, programming for these systems becomes more challenging due to,
for example, the additional layer of memory management. This paper presents
an extension to the OpenMP Cluster that integrates CUDA’s Unified Memory
management. Evaluation using a synthetic benchmark reveals that while this
extension simplifies the development of GPU-based OMPC applications, further
optimization is required to reduce its impact on performance.

1. Introduction

High Performance Computing (HPC) systems are becoming increasingly heterogeneous
[Meuer et al. 2014]. To deliver the computational capacity required by modern (scientific
and machine learning) applications, the number of accelerators (e.g., GPU and FPGA) on
a system node has increased. This heterogeneous architecture increases the complexity of
HPC application programming, which already suffered from the combination of several
languages and parallel and distributed programming models.

OpenMP Cluster (OMPC) [Yviquel et al. 2022] is an innovative programming
model for HPC clusters that build upon task parallelism. It effectively extends the popular
OpenMP API, allowing for the balanced distribution of computationally intensive scien-
tific tasks across nodes in an HPC cluster. This enables users to easily take advantage of
the power and scalability of HPC clusters without requiring specialized knowledge or ex-
pertise in distributed computing. OMPC enables the utilization of various APIs for tasks
on accelerators. However, it doesn’t handle buffers like variables and arrays allocated by
these APIs. Consequently, programmers must manually transfer data between APIs for
use in other tasks, increasing the complexity of programming the application.

In this work, we developed an extension to OMPC, making it capable of managing
address spaces allocated in both CPU and GPU. This extension aims to facilitate the
programming of OMPC applications that use GPUs.

2. Background

Memory management is a challenge in programming heterogeneous architectures due to
complexities in managing memory regions between cluster nodes and the addition of ac-
celerator memory. Heterogeneous nodes typically have main memory (RAM) for host
processors and device memory for accelerators. While accelerator APIs include data
transfer primitives, it is the programmer’s responsibility to use them when needed. Some
parallel programming models offer mechanisms to abstract different addressing spaces
into a single virtual space. The data transfer between physical addresses is done behind
the scenes by the programming model’s runtime, taking this responsibility off the pro-
grammer.



3. OMPC Unified Memory Extension

NVIDIA’s Compute Unified Device Architecture (CUDA) is a parallel computing plat-
form that allows developers to use Graphics Processing Units (GPUs) for general com-
puting. It features Unified Memory, which combines different memory spaces into one
accessible by any processor in the system.

The OMPC’s Data Management (DM) module ensures data consistency across
cluster nodes by examining task dependencies and tracking buffer locations with data
maps for each node. When a task is assigned to a node, DM checks these maps and
handles the necessary data forwarding. OMPC also has an event handling system that
oversees memory allocation and removal, as well as data submission, retrieval, and for-
warding between nodes.

We’ve modified OMPC'’s allocation and removal events in our extension to man-
age buffers in both main and device memory. We’ve shifted main memory allocations
to the CUDA Unified Memory system. This allows all memory addresses managed by
OMPC to be accessible to all CPUs and GPUs in the cluster nodes, enabling data trans-
fer between different nodes and devices without the need for explicit copying. This is
facilitated by CUDA’s management of data transfers between host and device.

It is important to note that the modification in OMPC is related only to the data
allocation and transfer mechanism used by the runtime. The extension does not modify
the programming model. However, buffers allocated only in the main memory or in a
device’s memory are reallocated to the unified address space when they are used in target
regions or mapped in the map clause of the OpenMP target directives. In the following
sections of this paper, this extended version is referred to as OMPC+UM.

4. Experiments

To assess the performance of OMPC+UM, we conducted experiments that compared it to
the original OMPC. We selected two applications for testing and ran each experiment ten
times, reporting the average result. The first application, Task Bench, is a benchmarking
framework that allows the comparison of parallel and distributed programming models
based on tasks [Slaughter et al. 2020]. Task Bench employs a graph abstraction that uses
vertices to represent tasks and edges to represent data dependencies between them. For
the experiments, we implemented two benchmark versions ! for the original OMPC and
OMPC+UM. Both versions perform computational tasks exclusively on the GPU.

The experiment involved a N x N square matrix multiplication application, com-
puting C' = AB by partitioning matrices into blocks and calculating matrix C' blocks us-
ing Cpr = 377, AyiBir, where g, 1, and s are valid partitions over the rows and columns of
matrices A and B, respectively. Block multiplications were implemented using cuBLAS 2
library as tasks for cluster nodes. We compared two application versions: one using the
original OMPC with explicit buffer copies and the other using OMPC+UM without ex-
plicit buffer copies. Comparing the two versions allowed us to evaluate the impact of
OMPC+UM on performance in a scenario where data transfers between CPU and GPU
are critical.

! Available at https:/gitlab.com/ompcluster/task-bench/
>The cuBLAS library provides optimized implementations for many common linear algebra operations
on GPUs.


https://gitlab.com/ompcluster/task-bench/

OO0OO0O
OO0O0O0O
O OO0

Trivial Stencil FFT Tree

Figure 1. Task Bench dependency types used in experiments.

4.1. Environment Setup

The experiments were performed on the Santos Dumont supercomputer at
LNCC [LNCC 2023]. The configuration consisted of 5 nodes with Intel Xeon
Cascade Lake Gold 6252 CPUs, 384 GB RAM, and Nvidia Volta V100 GPUs with 32
GB of VRAM. To ensure consistency and reproducibility, Singularity containers were
used. The software stack included Clang v14.0, NVCC v11.2, OMPC v14.9.0, MPICH
v3.4.2, and UCX v1.11.2. The experiments were managed and scheduled by the SLURM
task manager.

4.2. Experiments Results

(a) Task Bench (b) Matrix Multiplication
Dependency

m— FFT
wem Stencil-1D Periodic 1.0
08 | o e )
ee
. Trivial
0.8
0.6
| i I
0.0
0.5 1 2 4 16 64

CCR Blocks

N
- 1K
s 10K
= 25K

Performance
=3 =3
~ o
o
E

=3
)
=3

e
o

Figure 2. Performance relative to OMPC of OMPC+UM in (a) GPU computing
benchmarking for some task dependencies and (b) Block Matmul Applica-
tion.

Figure 2 (a) compares the performance of OMPC+UM and the original OMPC for
four Task Bench graph configurations, as shown in Figure 1. This comparison considers
the data exchanged between tasks and CCR?. The tests ran 10 million iterations (500
ms per task) on a task graph with a width of 4 and a height of 16. For graphs with
fewer dependencies like Tree and Trivial, OMPC+UM achieves over 80% of the original
OMPC’s performance for all three CCR values. This performance drop is due to the
overhead of CUDA runtime managing Unified Memory buffers. The performance drop
is more significant for graphs with more dependencies like FFT and Periodic Stencil-1D,
and it further decreases with higher communication costs.

3Communication to Computation Ratio measures the relationship between computation and communi-
cation costs.



Figure 2 (b) displays the matrix multiplication application experiment results,
comparing OMPC+UM and OMPC for three square matrix sizes. Performance is shown
as a function of block numbers from matrix partitionings (4, 16, and 64 blocks). For
N = 1K, performance gains and speedup were observed with increased blocks, but for
N = 10K and N = 25K, performance loss occurred as block numbers increased, with
the worst case (V. = 25K and 64 blocks) being below 40% of the original OMPC.

Our experiments suggest that the performance loss of OMPC+UM is largely due to
the frequent data transfers between the main memory and GPU memory. These transfers
occur when tasks are scheduled, and in the case of Task Bench, during a buffer validation
on the CPU that takes place before the execution of each task. We speculate that these
transfers could be minimized with an optimized OMPC+UM implementation that reduces
the number of data transfers between the CPU and GPU.

5. Conclusion

In this paper, we present OMPC+UM, an extension to OMPC that simplifies program-
ming OMPC applications with GPUs by managing buffers in both CPU and GPU and
handling data transfers between host and device. However, our experiments reveal that
OMPC+UM shows reduced performance compared to explicit data copy versions, par-
ticularly as data transfers increase. Therefore, further optimization of OMPC+UM is
necessary, such as minimizing data transfers between CPU and GPU. Our implementa-
tion provides valuable insights into OMPC’s behavior with other programming models,
highlighting the potential of integrating OMPC and CUDA for accelerating scientific ap-
plications in heterogeneous HPC clusters.

Acknowledgments

This work is supported by Petrobras under grant 2018/00347-4. We would also like to
thank the LNCC for granting the computational resources at the Santos Dumont super-
computer that were crucial to perform the experiments for this project.

References

LNCC (2023). Santos Dumont (SDumont) - Bull Sequana X1000, Xeon Gold 6252 24c
2.1GHz, Mellanox Infiniband EDR, Nvidia Tesla V100 SXM?2.

Meuer, H. W., Strohmaier, E., Dongarra, J., and Simon, H. D. (2014). The TOP500:
History, Trends, and Future Directions in High Performance Computing. Chapman &
Hall/CRC, 1st edition.

Slaughter, E., Wu, W., Fu, Y., Garcia, N., Kautz, W., Marx, E., Morris, K. S., Cao, Q.,
Bosilca, G., et al. (2020). Task bench: A parameterized benchmark for evaluating par-
allel runtime performance. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1-15. IEEE.

Yviquel, H., Pereira, M., Francesquini, E., Valarini, G., Gustavo Leite, P. R., Ceccato, R.,
Cusihualpa, C., Dias, V., Rigo, S., Sousa, A., and Araujo, G. (2022). The OpenMP
Cluster Programming Model. 51st International Conference on Parallel Processing
Workshop Proceedings (ICPP Workshops 22).



	Introduction
	Background
	OMPC Unified Memory Extension
	Experiments
	Environment Setup
	Experiments Results

	Conclusion

