
Exploring Simplicity and Efficiency: Regression-based
Scheduling Heuristics in HPC

Lucas Rosa1, Danilo Carastan-Santos2, Alfredo Goldman1

1Institute of Mathematics and Statistics, Department of Computer Science
University of São Paulo (USP) — São Paulo/SP — Brazil

2Laboratoire d’Informatique de Grenoble, CNRS, Inria, Grenoble INP
Univ. Grenoble Alpes (UGA) — Grenoble/FR — France

roses.lucas@usp.br, danilo.carastan-dos-santos@inria.fr,

gold@ime.usp.br

Abstract. This research examines the interplay between resource management
in high-performance computing systems and the application of machine learn-
ing techniques in developing scheduling heuristics. The potential for improved
performance, through scheduling heuristics based on linear regression and
polynomial job characteristics, was explored. Larger polynomials caused in-
stability due to multicollinearity effects, but the simplest polynomial delivered
stable and efficient scheduling performance. The study also evaluates the long-
term resilience of these regression-based heuristics.

1. Introduction

High-Performance Computing (HPC) has become a key tool for advances in science and
industry, generating discoveries and bringing innovative solutions. Enhancing the ef-
ficiency of current HPC platforms can be achieved through several strategies, with re-
source management standing out. Resource competition occurs when a large number of
users compete to execute their jobs on shared platforms. Solving the complex problem of
parallel job scheduling is an important part of optimizing resource allocation.

Although the theoretical side of parallel job scheduling has been well stud-
ied [Dutot et al. 2016, Lucarelli et al. 2018], implementation considerations, varying as-
sumptions, and the inherent unpredictability of the problem in HPC have motivated both
practitioners and researchers to implement and study simple heuristics. EASY Backfill-
ing is the most widely used heuristic on HPC platforms [Carastan-Santos et al. 2019].
A number of resource and job management software solutions, most notably
SLURM [Yoo et al. 2003], make use of this heuristic.

Collecting information about the jobs executed on the platform is a common prac-
tice among HPC platform maintainers. These workload logs contain details about the
jobs, such as processing times, processor requests, wait times, and so on. Given the in-
creasing amount of data generated by HPC platforms and the need for efficient scheduling
strategies, we aimed to understand the relationship between simplicity and efficiency in
the design of scheduling heuristics using a simple approach involving simulation and re-
gression.



2. Extracting Scheduling Knowledge
To simulate, we considered an HPC platform represented by a homogeneous cluster com-
posed of m processors. This approach uses a pair of job sets, S and Q, to represent the
current state of the platform and the waiting queue, respectively. The job sets are derived
from a workload log file. The simulation starts with jobs from set S being processed in a
first-come, first-served (FCFS) order. Once the submission of jobs from set S is complete,
jobs in set Q begin to branch out into trials Q∗

i , i = 1, 2, 3, . . . , which are random permu-
tations representing possible scheduling scenarios. The jobs are then scheduled based on
the particular order given by each permutation. We define P as being the set containing
all sampled permutations.

At the end of the scheduling simulation for all branches, each job j in Q is assigned
a score. This score is given by Equation 1. The score represents the impact of scheduling
a job to execute first, as measured by the average bounded slowdown of all the jobs in Q.
A lower score indicates a more positive impact on the overall slowdown of executing that
job first.

score(j) =

∑
Q∗

i∈P(j0=j) AVGbsld(Q∗
j)∑

Q∗
k∈P

AVGbsld(Q∗
k)

(1)

By combining the generated samples from multiple independent tuples (S,Q),
we produce a distribution score(j). We decided to represent a job j based on certain
attributes: Estimated processing time (pj), number of processors required for execution
(qj), and submission time (rj).

3. Regression Analysis
By applying a weighted multiple linear regression to the score distribution, we can derive
a generalized, smoother representation that serves as a job sorting function. This function
could be used to make decisions about the scheduling of jobs on an HPC platform.

We have defined four functions (Equation 2 through 5) to derive the scheduling
heuristics. A linear combination of the job attributes p, q, and r is represented by the func-
tion Lin. The remaining functions, Qdr, Cub, and Qua, gradually increase the degree of
the job attributes and includes a multiplicative factor pq, referred to in the literature as the
job area. Each factor correspond to a well-known scheduling policies such as First-Come,
First-Served (FCFS(j) = rj), Shortest Processing Time first (SPT (j) = pj), Shortest
Number of Processors first (SQF (j) = qj), and Shortest Area first (SAF (j) = pjqj).

Lin(j) = θ0 + θ1pj + θ2qj + θ3rj, (2)

Qdr(j) = Lin(j) + θ4p
2
j + θ5q

2
j + θ6r

2
j + θ7pjqj, (3)

Cub(j) = Qdr(j) + θ8p
3
j + θ9q

3
j + θ10r

3
j + θ11p

2
jqj + θ12pjq

2
j , (4)

Qua(j) = Cub(j) + θ13p
4
j + θ14q

4
j + θ15r

4
j + θ16p

3
jqj + θ17p

2
jq

2
j + θ18pjq

3
j . (5)

4. Results and Discussion
The scheduling simulations initially produced three datasets. The synthetic workload
trace generated using the Lublin and Feitelson workload model and two real-world work-



loads from the Parallel Workloads Archive [Feitelson et al. 2014], namely CTC-SP2 and
SDSC-Blue, were used to generate the job characteristics.

FC
FS

W
FP

3
UN

IC
EF SP
T

SA
F F2 LI
N

QD
R

CU
B

QU
A

0

5000

10000

15000

20000

Synthetic

FC
FS

W
FP

3
UN

IC
EF SP
T

SA
F F2 LI
N

QD
R

CU
B

QU
A

0

200

400

600

800

1000

1200
1315 1291 1286

CTC-SP2

FC
FS

W
FP

3
UN

IC
EF SP
T

SA
F F2 LI
N

QD
R

CU
B

QU
A

0

500

1000

1500

2000
4333
2507

4099
2471

4296
2457

SDSC-Blue

Scheduling policy

Av
er

ag
e 

bo
un

de
d 

slo
wd

ow
n

Figure 1. Schedule performance results by scheduling jobs derived from the
same workloads used in the simulation phase, and by incorporating actual
processing time when making scheduling decisions.

0

10

20

30

40
183
109
61

167
69
55

167 155 148 149 161

KIT-FH2

1

2

3

4

5

6
TRINITY

0

10

20

30

40 1285
63

921 247 486 229 229 148
MUSTANG

0

25

50

75

100

125

150
497
228

444
246

446 432
162

253 273 307

CURIE

0

5

10

15

20

25

30
34
47

31
44

30 105 30

ANL

0

100

200

300

400

500

600
HPC2N

FC
FS

W
FP

3

UN
IC

EF SP
T

SA
F F2 LI
N0

50

100

150

200

250
335
659
384

SDSC-BLUE

FC
FS

W
FP

3

UN
IC

EF SP
T

SA
F F2 LI
N0

100

200

300

400

500
848

SDSC-SP2

FC
FS

W
FP

3

UN
IC

EF SP
T

SA
F F2 LI
N0

50

100

150

200

250

300
334
359

CTC-SP2

Scheduling policy

Av
er

ag
e 

bo
un

de
d 

slo
wd

ow
n

Figure 2. Computed average bounded slowdown for different scheduling poli-
cies. Experiments based on user-estimated processing times, with back-
filling algorithm.

We then used these datasets to determine the optimal parameters for the proposed
scheduling heuristics. The Mean Absolute Error (MAE) values resulting from the regres-
sion were relatively small and consistent for the same function across different workloads,
indicating that the functions are representing the score distributions. However, the addi-
tion of derivative features and their correlation with the original job attributes resulted in



high values for the Variance Inflation Factor [García García et al. 2022] (VIF), suggesting
a multicollinearity problem. We found that the simplest function was the most effective.
While more complex functions resulted in poorer scheduling performance (Figure 1).

We then evaluated the efficiency of the heuristics obtained through regression on
various high-performance computing platforms and workloads, as shown in Figure 2.
This involved a simulation campaign using workload data collected over 19 years, span-
ning multiple platform and workload generations. By evaluating the efficiency of Lin
and introducing F2, another machine learning-derived scheduling heuristic, against other
policies, our results highlighted that regression-based scheduling heuristics can provide
stable and efficient performance across diverse high-performance computing environ-
ments without the need for coefficient adjustments over time.

5. Future Work
In future studies, we intend to improve our regression methodology by including more
features related to workload attributes and platform utilization, including elements such as
platform utilization levels, remaining job processing time, and time of day. In addition, to
address the growing concern about energy consumption in high performance computing,
we intend to incorporate energy-aware considerations into our heuristics. Our goal is
to reduce the overall power consumption of the platform while achieving comparable
scheduling efficiency.

References
Carastan-Santos, D., De Camargo, R. Y., Trystram, D., and Zrigui, S. (2019). One Can

Only Gain by Replacing EASY Backfilling: A Simple Scheduling Policies Case Study.
In 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (CCGRID), pages 1–10, Larnaca, Cyprus. IEEE.

Dutot, P.-F., Saule, E., Srivastav, A., and Trystram, D. (2016). Online Non-preemptive
Scheduling to Optimize Max Stretch on a Single Machine. In Dinh, T. N. and Thai,
M. T., editors, Computing and Combinatorics, volume 9797, pages 483–495. Springer
International Publishing, Cham.

Feitelson, D. G., Tsafrir, D., and Krakov, D. (2014). Experience with using the Parallel
Workloads Archive. Journal of Parallel and Distributed Computing, 74(10):2967–
2982.

García García, C., Salmerón Gómez, R., and García Pérez, J. (2022). A review of ridge
parameter selection: Minimization of the mean squared error vs. mitigation of multi-
collinearity. Communications in Statistics - Simulation and Computation, pages 1–13.

Lucarelli, G., Moseley, B., Thang, N. K., Srivastav, A., and Trystram, D. (2018). Online
Non-preemptive Scheduling on Unrelated Machines with Rejections. In Proceedings
of the 30th on Symposium on Parallelism in Algorithms and Architectures, pages 291–
300, Vienna Austria. ACM.

Yoo, A. B., Jette, M. A., and Grondona, M. (2003). SLURM: Simple Linux Utility for
Resource Management. In Goos, G., Hartmanis, J., Van Leeuwen, J., Feitelson, D.,
Rudolph, L., and Schwiegelshohn, U., editors, Job Scheduling Strategies for Parallel
Processing, volume 2862, pages 44–60. Springer Berlin Heidelberg, Berlin, Heidel-
berg.


