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Abstract. In this research project, we explore the usage of open-source and pro-
prietary solutions for performing general-purpose computing on graphics pro-
cessing units (GPGPU). We begin by categorizing projects them according to
their descriptions using unsupervised machine learning. Then, we compare the
performance and usability of the solutions in each category, proposing enhance-
ments to better support the development of open-source GPGPU tooling.

1. Introduction

1.1. Motivation

Computers have become invaluable assets to research, mainly with respect to numerical
problems – those that are largely unsolvable through analytical methods. As needs evolve,
not only software but also hardware has become increasingly complex, giving rise to
heterogeneous systems: these are composed of multiple processing units, each with its
own architecture, which will dictate performance characteristics for different workloads.

Graphics Processing Units (GPUs) are optimized for parallel computing, whereby
taking advantage of uncoupled data we can cut execution times proportionally to the num-
ber of computational units available. Linear algebra routines, which can be thoroughly
optimized for parallelism, sit at the core of many scientific applications, such as machine
learning and numerical simulations. We can clearly see that GPUs outperform CPUs in
such tasks, as shown in [Buber and Banu 2018].

Unfortunately, software for research does not seem to be held to standards as
high as more traditional content (see [Sufi et al. 2014]). It is also often developed by
researchers that are inexperienced in real world development practices, leading to un-
maintainable code (see [Carver et al. 2022]).

One particular development strategy that appeals to modern scientific standards
is that of open source, in which the code is fully available to the public. Notably, as
open-source software is auditable, it becomes easier to verify the reproducibility of scien-
tific results created with it (see [Barba 2022]), but this also allows for early collaboration
between researchers and developers, which can lead to better software design and perfor-
mance (see [Wilson et al. 2014]).



Building on the practice of open source we also have free software (commonly
denoted by FLOSS or FOSS): a development ideology that focuses around volunteer work
and donations, criticizing corporate interests, and is usually accompanied by permissive
or copyleft licenses. There is emerging work on the role of FLOSS in science, such as
[Fortunato and Galassi 2021], and some initiatives which praise a similar approach (see
[Katz et al. 2018, Barker et al. 2022]).

1.2. Proposal

As the GPU is a separate piece of hardware, it is necessary to use specialized APIs to
communicate with it. Implementation of such APIs is usually provided by the hardware
vendor, as it depends on the specific architecture of the GPU. Graphics APIs provide
much-needed abstractions to the programmer, as they are made to orchestrate the entire
pipeline, making the choice of API a crucial decision for the robustness of a given appli-
cation.

In the context of GPGPU, CUDA – a proprietary API projected and maintained by
NVIDIA – is historically significantly more widespread than any other API, proprietary
or not. On the one hand, most open-source alternatives that provide the same function-
ality are either in their infancy or have not provided what was needed to replace CUDA,
examples are, respectively, HIP by AMD, and OpenCL by the Khronos Group1. On the
other hand, OpenCL-related tooling has recently gained more focus amongst open-source
software consultancies, as we can see in [?], so it is possible that the situation is changing.

Thus, in this research project, we aim to:

1. Get a more precise figure of the usage of graphics-accelerated open-source soft-
ware used in scientific applications.

2. Find out how CUDA stands out from open-source alternatives.
3. Find ways to overcome such differences and make it easier for maintainers to add

support for open-source APIs.

We choose to analyze Vulkan and OpenCL as they are the most prominent open-
source alternatives to CUDA, and we will also take a look at HIP as it is the most recent
addition to the list. Both Vulkan and OpenCL are Khronos Group standards, of which
more than 170 companies are members, including AMD, ARM, Intel, NVIDIA, and Qual-
comm. Their API specifications are open and have ample documentation and adoption,
which makes them a good choice for our analysis. HIP (Heterogeneous-Compute Inter-
face for Portability) provides a solution to ease the transition from CUDA to more portable
code, thus making it interesting to us as well.

2. Methodology

So far, we have made some progress on objective 1 by analyzing popular graphics-
accelerated projects using topic modeling2.

1More generally speaking, there are also competing APIs in the heterogeneous computing space, such
as OpenMP, OpenACC, and SYCL, but we focus primarily on GPGPU in this work.

2All code related to this work is available at isinyaaa/foss-gpgpu-stack.

https://github.com/isinyaaa/foss-gpgpu-stack


2.1. Data collection

We assume that most relevant scientific applications have support for CUDA. NVIDIA’s
list of accelerated apps provides a non-exhaustive list of applications that use it, and by
filtering by relevant categories and manual sorting, we got a list of 141 projects that
are open source and use git as their version control system. After that, following
[Zheng et al. 2018]’s methodology, we gathered the repositories’ README files and re-
moved sections that were not relevant to our analysis.

2.2. Data analysis

The gathered data was cleansed further, removing stop words, symbols (such as punctua-
tion), standalone numbers, and very short words. We then break up the data into sizeable
chunks by tokenizing and lemmatizing it. This reduces the number of words to a more
manageable amount, and also allows us to compare words that are similar in meaning.

We then store the results of preprocessing in a count vector, which abstracts away
from the order of the words and makes it easier to compare documents. In this step, we
also remove words that appear in less than 10% of documents, or in more than 90% of
them, as they are either too common or too rare to be relevant to the analysis.

After that, we use Latent Dirichlet Allocation (LDA) to group the documents into
N topics. We use the coherence score for tuning the hyperparameters of our model,
randomizing samples of the data, so we do not overfit the model to the data while testing
for different ranges of hyperparameters with varying precision.

We were able to generate clear visualizations for a tuned gensim model by using
the t-distributed stochastic neighbor embedding (t-SNE) method for pyLDAvis, as we
can see in figure 1. T-SNE works well with sparse data, as it is better able to preserve
local structure, but it needs manual tuning.

3. Discussion
By taking the most likely topic for each document, we were able to plot figure 2. Looking
at the words composing each topic, it is still non-trivial to label them. Thus, we are still
unable to make any conclusions about the repositories’ actual subjects.

4. Next steps

4.1. Statistics

As suggested by one of the reviewers, using Named Entity Recognition (NER) to help
cluster the repositories might be promising.

4.2. Graphics APIs

As we refine our statistical analyses, we then proceed to profile GPU performance of
the projects we have selected, giving special attention to those that implement another
graphics API besides CUDA. We will then compare the performance between top projects
in each category, and analyze different implementations of similar routines. This requires
understanding the different APIs, and how they work. It will also require finding useful
benchmarks and tools and possibly implementing our own.

https://nvidia.com/en-us/gpu-accelerated-applications
https://nvidia.com/en-us/gpu-accelerated-applications


Figure 1. Visualization of gensim’s LDA results (trained model with t-SNE dimen-
sionality reduction method).
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