
Study and analysis of parallel N-body simulations
Guilherme G. Arcencio1, Hélio Crestana Guardia1

1Departamento de Computação – Universidade Federal de São Carlos (UFSCar)
São Carlos – Brazil

garcencio@estudante.ufscar.br, helio.guardia@ufscar.br

Abstract. The N-body Problem involves predicting the motion of a group of as-
tronomic particles under the influence of each other’s gravitational field. Due to
the nonexistence of closed-form analytical solutions for N bigger than 2, numer-
ical methods must be employed, and those do not scale well for large numbers
of bodies. Thus, we developed and investigated parallel, high performance N-
body simulations in GPUs and multi-core CPUs, and found that, even with dy-
namic time steps and synchronization requirements, GPUs massively reduce the
time required by the simulations. While multi-core CPUs also allow for large
speedups, they are vastly outperformed by the former.

1. Introduction
In celestial mechanics, the N -body Problem is the prediction of the motion of N particles
under the gravitational influence of each other [Meyer et al. 2009]. Given that, for N >
2, the problem has no general, closed-form analytical solution, it must be tackled with
numerical methods and simulations.

N -body simulations are important to the study of the evolution of cosmological
structures, as well as molecular dynamics, in which the gravitational interactions are re-
placed by Coulomb forces [Board et al. 1999]. However, each simulation step involves
calculating the force vectors between every pair of particles, resulting in O(N2) complex-
ity. Therefore, direct methods do not scale well for large values of N without the use of
parallel computing.

In this paper, we develop and analyze parallel implementations of an N -body sim-
ulation for GPUs and multi-core CPUs. We also include dynamic time steps in the numer-
ical simulations, which both enhances numerical stability and introduces synchronization
challenges.

2. N-body simulations
Given N celestial bodies, the N -body problem consists of the following system of differ-
ential equations:

q̈i =
∑
j ̸=i

Gmj

(||qj − qi||2 + ϵ2)
3
2

(qj − qi) i = 1, . . . , N, (1)

where qi is the position of the i-th body in three dimensional space, mj is the mass
of the j-th body, G is the gravitational constant, and ϵ is a softening constant used to
avoid the singularities where qi = qj . Although the system can be simulated by simply
evaluating all interactions in O(N2) time – the “direct method” – there are algorithms

which use approximations to reduce time complexity, such as the hierarchical, tree-based
Barnes-Hut algorithm [Barnes and Hut 1986], with O(N logN) complexity, and the Fast
Multipole Method [Greengard and Rokhlin 1987], with linear complexity.

In order to maintain numerical stability, dynamic time steps may be used during
numerical integration according to particle density. One of the most common time step
criterion is ∆t ≤

√
ηϵ/||a||, where a is the acceleration vector of the particle and η is a

tolerance parameter [Grudić and Hopkins 2020].

N -body simulations are a popular topic in the high performance computing litera-
ture. Both direct and hierarchical algorithms were parallelized in [Zecena et al. 2013].
Their work studied performance gains and energy savings in GPU and multi-core
CPU implementations and demonstrated that, using either algorithm, multi-threading
greatly reduces the simulation runtime, while the use of GPUs increased efficiency
by orders of magnitude. Those experiments were replicated in [Pinto et al. 2015] and
[Boukhary and Colmenares 2019], to similar results.

We complement those previous works by providing an open source implemen-
tation of parallel N -body simulations and analyzing its performance. We also include
dynamic time steps in the simulation to improve numerical stability and study its impact
when compared to previous, fixed time step versions.

3. Methodology
Our N -body simulations were implemented by numerically integrating the system in (1)
using Verlet integration [Hairer et al. 2003]:

qi,n+1 = qi,n + (qi,n − qi,n−1)
∆tn
∆tn−1

+ q̈i,n
∆tn +∆tn−1

2
∆tn, (2)

where the position qi of each particle is updated using its previous two positions and
its current acceleration vector. In the first iteration, there is only one previous position
available, and thus initial velocities are used instead:

qi,1 = qi,0 + vi,0∆t0 +
1
2
q̈i,0∆t20. (3)

The n-th time step is given by ∆tn =
√
ηϵ/||max1≤i≤N q̈n

i ||, i.e., the smallest
required time step among all particles in the current iteration. The parameters used were
η = 0.05 and ϵ = 0.001 and the initial conditions of the N bodies were randomly gen-
erated. Algorithm 1 describes how Equations (1), (2) and (3) are used throughout the
simulation.

The multi-core implementation was developed in C using the OpenMP API. The
loops at lines 2 and 6 of Algorithm 1 were parallelized by having each thread responsible
for calculating the acceleration and then updating the positions of a subset of particles.
Line 4 is parallelized by the reduction clause in the “omp parallel for” directive.

The GPU version was implemented in CUDA, with four kernels used throughout
the program. The main kernel parallelizes the loop at line 2 of Algorithm 1 and uses
data tiling and shared memory for better performance. A parallel reduction kernel is
used to parallelize line 4 and avoid extra memory transfers. Finally, the loop at line 6 is
parallelized by two kernels: one using Equation (2) and the other Equation (3).

Algorithm 1 N-BODY SIMULATION(Q, V , M , k)
Input: N bodies of initial positions Q, initial velocities V , and masses M , and number of steps k
Output: N updated positions after k iterations

1: for s = 1 to k do
2: for i = 1 to N do
3: calculate acceleration q̈i using Equation (1)
4: a← max1≤i≤N ||q̈i||
5: ∆t←

√
ηϵ/||a||

6: for i = 1 to N do
7: update positions Q using Equation (2) or (3)
8: return Q

All source code has been made available on GitHub1 under the MIT License.
Multi-core experiments were run on an Intel Xeon Silver 4208 with 16 physical cores and
32 logical cores, while GPU experiments were run on an NVIDIA GeForce RTX 2080
Ti. Every test was repeated five times so as to account for circumstantial differences in
runtimes.

4. Results
Simulation results on multi-core CPU are shown in Figure 1. Multi-threading greatly
reduced runtimes: from 177.2s to 10.5s when N = 25000, from 702.9s to 41.6s when
N = 50000, and from 2837.4s to 181.9s when N = 100000. Speedups are large even
when there are more threads than physical cores due to the high computational intensity
in the program.

However, GPU runtimes, as shown in Figure 2, are many orders of magnitude
smaller than CPU runtimes. When N = 100000, 10 simulations steps took less than one
second, while even the best CPU performance required three minutes to complete. Block
sizes for kernel executions had little impact on runtimes.

1 8 16 32 64 128
Number of threads

0

1000

2000

Ru
nt

im
e

(s
)

Particles
25000
50000
100000

1 8 16 32 64 128
Number of threads

5

10

15

Sp
ee

du
p

Particles
25000
50000
100000

1 8 16 32 64 128
Number of threads

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Particles
25000
50000
100000

Figure 1. Simulation results on multi-core CPU after 10 steps: runtime, speedup
and efficiency, respectively. The dashed line indicates the number of avail-
able cores (32).

5. Conclusions
While multi-core parallelization greatly improved N -body simulation performance, GPU
implementations allow for astronomically smaller runtimes. The use of dynamic time
steps, which introduces synchronization steps – finding the largest acceleration vector –
had little to no impact on the excellent GPU performance.

1https://github.com/GuiArcencio/parallel-nbody

32 64 128 256 512 1024
Threads per block

0.1

0.2

0.3

Ru
nt

im
e

(s
)

Particles
25000
50000
100000

Figure 2. GPU implementation runtimes after 10 simulation steps.

Future work includes simulating and experimenting on larger numbers of particles,
as well as introducing more realistic elements to the simulations, such as dark matter and
gas nebulae. More parallelization tests may also be performed on different algorithms,
such as the hierarchical Barnes-Hut method.

References
Barnes, J. and Hut, P. (1986). A hierarchical O(N log N) force-calculation algorithm.

Nature, 324(6096):446–449.

Board, J. A., Humphres, C. W., Lambert, C. G., Rankin, W. T., and Toukmaji, A. Y.
(1999). Ewald and multipole methods for periodic N-body problems. In Compu-
tational Molecular Dynamics: Challenges, Methods, Ideas, pages 459–471, Berlin,
Heidelberg. Springer.

Boukhary, S. and Colmenares, E. (2019). Study, analysis, and acceleration of an n-body
simulation under many-core environments using an object oriented approach. In 2019
International Conference on Computational Science and Computational Intelligence,
pages 1506–1510. IEEE.

Greengard, L. and Rokhlin, V. (1987). A fast algorithm for particle simulations. Journal
of Computational Physics, 73(2):325–348.

Grudić, M. Y. and Hopkins, P. F. (2020). A general-purpose time-step criterion for simula-
tions with gravity. Monthly Notices of the Royal Astronomical Society, 495:4306–4313.

Hairer, E., Lubich, C., and Wanner, G. (2003). Geometric numerical integration illustrated
by the Störmer–Verlet method. Acta Numerica, 12:399–450.

Meyer, K., Hall, G., and Offin, D. (2009). Introduction to Hamiltonian Dynamical Sys-
tems and the N-Body Problem. Springer.

Pinto, V. G., Herbstrith, V. A., and Schnorr, L. M. (2015). Replicating the performance
evaluation of an n-body application on a manycore accelerator. In 2015 International
Symposium on Computer Architecture and High Performance Computing Workshop,
pages 19–24. IEEE.

Zecena, I., Burtscher, M., Jin, T., and Zong, Z. (2013). Evaluating the performance and
energy efficiency of n-body codes on multi-core CPUs and GPUs. In 2013 IEEE 32nd
International Performance Computing and Communications Conference, pages 1–8.
IEEE.

