
Improving Performance Estimation of Smart City Simulations
Using the Actor Model

Francisco Wallison Rocha1, Emilio Francesquini2, Daniel Cordeiro1

1Escola de Artes, Ciências e Humanidades — Universidade de São Paulo (USP)
São Paulo — SP — Brasil

{wallison.rocha, daniel.cordeiro}@usp.br

2Centro de Matemática, Computação e Cognição – Universidade Federal do ABC (UFABC)
Santo André — SP — Brasil

e.francesquini@ufabc.edu.br

Abstract. The United Nations estimates that the world will reach around 10.4
billion people by 2050. Urban mobility problems already faced by large cities
will be worsened, such as the emission of polluting gases into the atmosphere.
These problems require innovative solutions. Solutions within the context of
smart cities emerge as an alternative, an example of which is simulations.
However, large-scale simulations are still a challenge. Techniques such as Si-
mEDaPE emerge to help face these challenges. For this reason, they must be
robust techniques to deal with a large volume of data. Therefore, this work pre-
sents a new approach using the actor-based model to improve the performance
of SimEDaPE. The approach proposed here proved to be 48× than its predeces-
sors.

1. Introduction
The world’s population has reached 8 billion people on the Earth’s globe. The United
Nations estimates that the world’s population is expected to increase by nearly 2 billion
by 2050, peaking at nearly 10.4 billion in the mid-2080s1. It is also estimated that by
the year 2100, 90% of the global population will live in urban areas. This growth will
result in the exacerbation of several problems related to urban mobility, such as excessive
carbon dioxide emissions into the atmosphere. Cities are responsible for more than 70%
of CO2 emissions [Hong et al. 2022].

Solving such problems is not trivial. They require innovative solutions to solve
or mitigate them. Solving such problems is not trivial. They require innovative soluti-
ons to resolve or mitigate them. An alternative to mitigate these problems is the use of
technologies in the context of smart cities. An example of these technologies are simu-
lations. An example of these simulators is the InterSCSimulator. The InterSCSimulator
is a large-scale simulator that simulates a city or regional map with pedestrian and car
trips, as well as metro and bus systems [Santana et al. 2017]. Although the InterSCSi-
mulator is a large-scale simulator, it requires improvements and techniques to enhance
its performance. An example is the Simulation Estimation by Data Patterns Exploration
(SimEDaPE) [Rocha et al. 2021]. SimEDaPE is a technique that uses unsupervised lear-
ning to identify pattern recurrence, obtained from previous simulations, to estimate new

1https://www.un.org/en/global-issues/population

https://www.un.org/en/global-issues/population


similar simulations without running them completely. This way, SimEDaPE accelerates
InterSCSimulator simulations.

However, large-scale simulations generate significant volumes of data, posing a
challenge for SimEDaPE. To expedite simulations, the technique must not become a
bottleneck. Efforts have been made to enhance SimEDaPE’s performance using multi-
threading, as noted by [Rocha et al. 2022a] and [Rocha et al. 2022b]. Nonetheless, the
multi-threading model presents various challenges, including race conditions and dea-
dlocks. An alternative to mitigate these challenges is the utilization of the actor mo-
del. This model offers isolation, concurrency, and fault tolerance, among other features.
Consequently, this work proposes a new implementation alternative to the ones cited in
[Rocha et al. 2022a] and [Rocha et al. 2022b], employing the Akka Framework2. Akka
is an actor model framework implemented in the Scala language, with versions available
in Java.

2. Background
Smart city technologies are very useful in solving several urban mobility problems. An
example of these technologies is simulations. Simulations allow testing and validating
solutions before applying them. An example of a simulator is the InterSCSimulator. It
simulates a map of a city or region, including pedestrian and car trips and bus and metro
systems. Facing some limitations presented by the InterSCSimulator, such as excessive
memory usage and poor load balancing in distributed memory, the big challenge of the
InterSCSimulator is to simulate scenarios such as São Paulo with millions of elements.
To mitigate or solve these limitations, the Simulation Estimation by Data Patterns Explo-
ration (SimEDaPE) was proposed [Rocha et al. 2021].

The SimEDaPE uses pattern recurrence obtained from previous simulations to es-
timate new similar simulations without running them completely. SimEDaPE has several
steps to carry out the estimate. One of them is the Warping Path calculation. As seen in
the study by [Rocha et al. 2022b], it is one of the steps that take the most time to execute,
corresponding to around 95.21% of SimEDaPE’s execution time. This step consists of ap-
plying Dynamic Time Warping (DTW) [Berndt and Clifford 1994] to extract the Warping
Path (WP). WP is the end-to-end temporal mapping between two time series, representing
their similarity and displacement in time.

To improve the performance of this stage, two approaches were proposed in
[Rocha et al. 2022a] and [Rocha et al. 2022b]. Both approaches used Python imple-
mentations that were faster than the original implementation. These implementati-
ons were provided by the DTAIDistance3 library using Cython in its core. Further-
more, both provided parallel approaches using the Joblib4 library. The big difference
between the two works is that in [Rocha et al. 2022b], load balancing was implemented
between the processes. However, the balancing in this case brought few gains in relation
to [Rocha et al. 2022a]. Both approaches achieved a 3x speedup in relation to the faster
sequential implementation, even though in the experiments carried out, an 8-core proces-
sor running 8 processes in parallel was used. The cause of this limitation in speedup can

2https://akka.io/
3https://pypi.org/project/dtaidistance/
4https://joblib.readthedocs.io/en/stable/

https://akka.io/
https://pypi.org/project/dtaidistance/
https://joblib.readthedocs.io/en/stable/


be explained because Python’s Global Interpreter Lock (GIL) restricts the simultaneous
progress of threads, hindering the exploitation of multi-core CPU benefits for parallel
execution [Mattson et al. 2021].

3. Proposal and Experimental Results
Given the limitations presented by previous approaches, this work proposes a new ap-
proach to improve the performance of the Warping Path calculation stage. Alternatively,
this work provides an implementation of the step using the Java language, a compiled
language that runs on the Java Virtual Machine (JVM). Java offers robust support for
multi-threading, especially in the version used in this project, Java 21. Java 21 brings
the benefits of virtual threads5. Furthermore, for parallelism, this approach implements
the actor-based model using the Akka framework. In this model, each actor represents
a thread being executed, where communication between authors is done through the ex-
change of non-blocking messages. Akka, with the actor-based model, offers isolation,
concurrency, fault tolerance, and high performance, among other benefits. Another im-
portant detail of this approach is the use of an optimized Dynamic Time Warping imple-
mentation6. This implementation was based on the work by [Salvador and Chan 2007].

In this proposed method, a single management actor is created after the clustering
step of SimEDaPE (using a clustering algorithm [Rocha et al. 2021]). This actor is res-
ponsible for starting and ending the execution when all Warping Paths (WP) have been
calculated. To start processing, this managing actor creates actors for each cluster. Cluster
actors hold information related to the cluster, such as time series and centroids (grouped
and generated using a clustering algorithm), and create actors responsible for calculating
the WP. When these actors finish calculating the WP, they inform their respective clus-
ter actor that they have finished the calculation. Processing ends when all cluster actors
inform the managing actor that all WP of their time series have been calculated.

To determine the gains from the new approach, two experiments were carried out.
The first experiment was performed to compare the two approaches with 445,501 time
series of size 3,403 data points divided into 64 clusters. The time for the new approach
was 76.8s and the time for the proposal by [Rocha et al. 2022b] was 3731.65s. The second
experiment used a dataset with 6,000,000 time series of size 6,806 data points distributed
in 64 clusters. This time series corresponds to around 500,000 street simulations over 24
hours, with time divided into 2 hours. Just completed for the approach of this work, due
to memory limitations of the proposal by [Rocha et al. 2022b]. The machine used to run
the experiments has a 2-thread AMD EPYC 7453 processor (28 cores/56 threads) with 1
TB of RAM.

4. Conclusions
This work presented a new approach using the actor-based model and implemented in a
compiled language with more robust support for multi-threading, as an alternative to the
approaches presented in [Rocha et al. 2022a] and [Rocha et al. 2022b]. The experimental
results show the great improvements in execution time presented by the new approach
proposed here compared to the previous ones. The approach proposed here proved to be

5https://docs.oracle.com/en/java/javase/21/core/virtual-threads.html
6https://code.google.com/archive/p/fastdtw/

https://docs.oracle.com/en/java/javase/21/core/virtual-threads.html
https://code.google.com/archive/p/fastdtw/


48× faster than the previous one. Thus, it is possible to notice significant gains. This
increases the robustness of SimEDaPE for estimating large simulations.

By noting the performance presented by out approach, as future work, we see the
possibility of implementing it for other stages, such as clustering. An example of using
Akka in clustering is presented in the work by [Taamneh et al. 2020]. Furthermore, the
proposed approach was only applied to one architecture. So, it would be interesting to
apply it to other architectures, such as distributed memory since the framework offers
support for this. Another important thing for future work is to stress the experiments
more to find out how the approach deals with large volumes of data, thus being able to
identify problems with memory management.

Acknowledgments:
This work is part of the project “Trends in High-end Computing Performance, from Re-
source Management to New Architectures Computers”, grant #2019/26702-8, São Paulo
Research Foundation (FAPESP).

Referências
Berndt, D. J. and Clifford, J. (1994). Using dynamic time warping to find patterns in time

series. In Proceedings of the 3rd International Conference on Knowledge Discovery
and Data Mining, AAAIWS’94, page 359–370, Seattle, WA. AAAI Press.

Hong, S., man Hui, E. C., and Lin, Y. (2022). Relationship between urban spatial structure
and carbon emissions: A literature review. Ecological Indicators, 144:109456.

Mattson, T. G., Anderson, T. A., and Georgakoudis, G. (2021). Pyomp: Multithreaded
parallel programming in python. Computing in Science Engineering, 23(6):77–80.

Rocha, F., Francesquini, E., and Cordeiro, D. (2022a). Fast simedape: Simulation esti-
mation by data patterns exploration. In Anais da XIII Escola Regional de Alto Desem-
penho de São Paulo, pages 37–40, Porto Alegre, RS, Brasil. SBC.

Rocha, F., Francesquini, E., and Cordeiro, D. (2022b). Improving smart city simulation
performance with simedape and parallelism. In Anais do XXI Workshop em Desem-
penho de Sistemas Computacionais e de Comunicação, pages 108–113, Porto Alegre,
RS, Brasil. SBC.

Rocha, F. W., Fukuda, J. C., Francesquini, E., and Cordeiro, D. (2021). Accelerating
smart city simulations. Latin America High Performance Computing Conference. To
publish.

Salvador, S. and Chan, P. (2007). Toward accurate dynamic time warping in linear time
and space. Intelligent Data Analysis, 11(5):561–580.

Santana, E. F. Z., Lago, N., Kon, F., and Milojicic, D. S. (2017). InterSCSimulator:
Large-scale traffic simulation in smart cities using erlang. In International Workshop
on Multi-Agent Systems and Agent-Based Simulation, pages 211–227. Springer.

Taamneh, S., Qawasmeh, A., and Aljammal, A. H. (2020). Parallel and fault-tolerant k-
means clustering based on the actor model. Multiagent and Grid Systems, 16(4):379–
396.


	Introduction
	Background
	Proposal and Experimental Results
	Conclusions

