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Abstract. This paper presents the Stealth Metrics Framework, an I/O charac-
terization and data-driven I/O replay framework that users can utilize to gain
detailed insights into how their applications issue I/O to storage systems. The
study provides a clear snapshot of how a MongoDB instance manages recovery
from a crash from a storage I/O perspective, and explores potential strategies to
enhance recovery performance.

1. Introduction
Any organization that utilizes computer systems aims to use the computational resources
of these systems as efficiently as possible. This is closely linked to understanding the
performance capacity of a system. The extensive use of computing in science is a concrete
example that maximizing the performance of computer systems is a matter of extreme
importance [Wright 2019].

Performance is generally quantified through metrics such as throughput, utiliza-
tion, and response time, yet measuring a system’s performance encompasses a broad
range of factors. Several HPC applications rely on I/O, therefore it is also important
to understand the behavior of the file system to improve performance.

[Reisel et al. 2020] pointed out the projected production of approximately 175
ZettaBytes of data by 2025 across various platforms. Therefore understanding the I/O
characteristics of applications to enhance storage system performance is crucial for op-
timizing overall system performance. Tracing I/O system calls is crucial for analyz-
ing application I/O characteristics, with strace being a widely used tool. However, as
[Gebai and Dagenais 2018] have shown, its overhead makes it unsuitable for production
environments.

This paper introduces a non-intrusive method for not only characterizing I/O op-
erations for Linux-based applications, but also replaying these I/O operations regardless
of the storage subsystem type.

2. Background
The Linux Kernel I/O System Calls. A system call is a controlled entry point into the
kernel, allowing a process to request that the kernel perform some action on the pro-
cess’s behalf. The kernel makes a range of services accessible to programs via the system
call application programming interface (API). These services include, for example, cre-
ating a new process, performing I/O, and creating a pipe for interprocess communication



[Kerrisk 2010]. Therefore system calls are crucial for executing tasks that require pro-
tected access to hardware resources, which cannot be directly accessed from user space.

The Linux Kernel Tracepoint System. The Linux kernel’s tracepoint system is a
sophisticated mechanism designed for monitoring and debugging kernel operations with
minimal impact on system performance. According to [Desnoyers 2020], tracepoints are
effectively placed hooks within the kernel code that can be activated by users to gather
diagnostic and performance data. This feature is essential for comprehensively under-
standing the Linux kernel’s behavior, particularly in production settings where stability
and performance are crucial.

eBPF - extended Berkeley Packet Filter. The Extended Berkeley Packet Filter
(eBPF) is a significant feature of the Linux kernel that enables the secure execution of
concise programs within kernel space, without the need to modify kernel code or load
modules. Originally developed for network packet filtering, eBPF’s functionality has ex-
panded to include a general-purpose framework for executing code in response to diverse
events such as system calls, network activities, and tracepoints. eBPF programs, written
in a restricted C-like syntax and compiled into bytecode, can be linked to multiple kernel
hooks, facilitating their activation by specified events.

FIO - Flexible I/O. Flexible I/O (FIO) is a widely-used, open-source tool for
benchmarking and stress testing storage system performance, compatible with Linux,
Windows, and macOS. It is valued in industry and academia for its versatility, configura-
bility, and detailed performance analytics. It can replay I/O operations from trace files,
simulating real-world workloads with high accuracy — an advanced feature crucial for
benchmarking, testing, and analyzing storage system performance and reliability under
specific recorded conditions — this facilitates detailed testing and analysis in a controlled
environment.

3. Stealth Metrics Framework
The Stealth Metrics Framework (SMF) is designed for low-impact tracing of I/O work-
loads in production systems, featuring an architecture that supports workload character-
ization and data-driven I/O replay. It consists of four main components: a non-intrusive
I/O tracer that minimally disrupts system operations, an I/O trace parser that organizes
captured data, an I/O visualizer for graphical workload representation, and an I/O trace
generator for replicating workloads through synthetic operations.

The Non-Intrusive eBPF-based I/O Tracer. The bpf-io-trace.bt (biot) script,
written in the higher-level eBPF language bpftrace, strategically attaches probes to kernel-
level I/O system calls using the kernel’s tracepoint system. It captures data and transfers
it to an eBPF performance ring buffer, a data structure optimized for high-performance
logging. This buffer allows asynchronous data consumption from user space, separating
the data capture from processing. This component operates within the server that initiates
the I/O requests.

The I/O Trace Parser. The I/O Trace Parser, a Python script, utilizes a pub-
lisher/subscriber design pattern. In this setup, a file reader instance sequentially reads and
publishes each line from a trace file to its subscribers. There are three subscribers in the
current implementation: one counts all system calls during the observed period, another
counts system calls by file, and the third generates a FIO trace file.



The I/O Characterization Views. A Jupyter notebook is used to display data
visualization charts that assist in I/O characterization.

4. Results and Discussion

This section demonstrates the potential of the Stealth Metrics Framework through its ap-
plication in analyzing the I/O patterns of a MongoDB database during its recovery fol-
lowing a crash.

Beginning with an analysis of the system call distribution created by SMF, as
shown in Figure 1, it is evident that read operations are the predominant component of
the I/O workload.

Figure 1. System call distribution.

Subsequently, an examination of the top 10 files ranked by the total number of
system calls reveals significant activity on the journal files since they feature the top 3 in
the list, as illustrated in Figure 2.

Figure 2. Top 10 files ranked by total number of system calls.

Delving deeper into the analysis, the data presented in Figure 3, captures in de-
tail the mongod process as it opens and processes the WiredTiger journal data located at
/data/db/journal/WiredTigerLog.0000000004. The process begins with the database read-
ing 128-byte segments starting from offset 0, continuing in sequence to offset 128. It then
jumps to offset 4992 and continues reading up to offset 5632 in similar 128-byte steps.
After this point, the reading process remains sequential but with a substantial increase in
the request size to 1,048,576 bytes.

This detailed observation allows us to conclude that the file access pattern is se-
quential, as the mongod process methodically progresses through the file, moving from
one offset to the next in increments determined by the request size.



How can the findings from this analysis enhance performance? According to
[MongoDB 2024], it is advised to set storage device read-ahead to a low value like 8KB
due to mainly random reads in typical MongoDB operations. Yet, for a MongoDB in-
stance recovering from a crash, the data suggests increasing read-ahead to a value larger
than the request size could be advantageous. Such an adjustment might speed up recovery
by prefetching more data into the cache, thereby boosting read throughput.

Figure 3. mongod process reading a journal file for recovery.

Limitations. Currently, the Stealth Metrics Framework is unable to provide in-
formation on applications conducting I/O operations via memory-mapped files. Although
the data collected by the eBPF-based tracer is comprehensive and rich in details, enhance-
ments in data visualization within the framework are ongoing to yield deeper insights into
the I/O characteristics of workloads. Additionally, the development of the SMF subscriber
responsible for producing the FIO trace file is still in progress.

5. Conclusion
The Stealth Metrics Framework shows significant promise in offering insights into I/O-
bound workloads, aiming to equip developers and systems administrators with a thorough
understanding of the I/O characteristics issued by applications. It is designed to capture
sufficient information about these I/O requests to allow them to be comprehensively un-
derstood and replicated, regardless of the underlying storage system.
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