
AWS powered cloud research environment PaaS

Diego Frazatto Pedroso, Lucas Eduardo Gulka Pulcinelli,
Wiliam Akihiro Alves Aisawa and Sarita Mazzini Bruschi

1 ICMC/USP - Institute of Computer Sciences and Mathematics
São Carlos, Brazil

{diegopedroso, lucasegp, alveswill}@usp.br, sarita@icmc.usp.br

Abstract. Cloud computing has transformed organizational IT resource man-
agement. Among the prominent cloud service models, Infrastructure as a Ser-
vice and Platform as a Service provided by Amazon Web Services stand out as
integral components of modern cloud computing ecosystems. We’ve employed
open-source tools to create a configurable infrastructure pipeline using Kuber-
netes to achieve high availability and consistency for research projects. Our
platform integrates modern open-source stacks in order to reduce delivery time
and complexity and increase observability, leveraging tools such as IaC and
load testing frameworks. These practices blend academic and industry princi-
ples for comprehensive deployment and management of cloud-based applica-
tions.

1. Overview and Introduction

Cloud systems have revolutionized software development by offering services with dif-
ferent levels of abstraction. These services are commonly classified into three categories:
Infrastructure as a Service (IaaS), granting users complete control over their systems;
Software as a Service (SaaS), delivering managed individual functionalities to applica-
tions; and Platform as a Service (PaaS), offering a comprehensive environment facilitating
rapid deployments with minimal configuration.

Another important concept in cloud computing is the adoption of microservices,
contrasting with monolithic systems. Microservices consist of smaller components with
specific responsibilities, thereby enhancing scalability and performance. Practically, their
implementation involves decomposing a large system into multiple smaller units to fa-
cilitate simultaneous development. This approach yields a high number of components,
releases, processes, and tools being utilized.

Due to the extensive utilization of microservices and cloud services, achieving
seamless integration and automation across multiple stacks presents a challenge. This
challenge arises from factors such as compatibility issues, cost constraints, and adminis-
trators’ proficiency in these environments.

In this scenario, research [Beyer et al. 2018] suggests that 70% of system inter-
ruptions result from poorly executed implementations, excessive integrations, deficient
processes, and inadequate monitoring. Consequently, a robust and comprehensive cloud
framework becomes essential in the lifecycle of an application. Therefore, the develop-
ment of such a comprehensive framework is imperative within the realm of academic
research.



2. Encouraging experimentation by utilizing cloud-native Infrastructure and
Platform as a Service

Cloud-native environments offer numerous fully managed components, marked by frag-
mentation, distribution, and multiple layers of abstraction, aimed at improving user ac-
cessibility (Picoreti, 2018). Given this context, it is crucial to replicate behaviors and
environments that align with these characteristics. Consequently, we have created a ser-
vice management and test generation platform leveraging AWS infrastructure to fulfill
our objectives.

Figure 1 presents a comprehensive diagram that illustrates the operational frame-
work and the components that make up the overall system.

Figure 1. AWS Platform-as-a-Service Top-Down

Initially, the basic cloud infrastructure and services are defined using Infrastruc-
ture as Code (IaC) via Terraform and Helm, which allows most constructs to be created
in a stateless manner as atomic pieces that can be rolled back as needed1. Such a model
ensures maximum consistency not only inside the infrastructure and its components but
also within the code of the applications operating on the framework, enabling easy repli-
cability. Consequently, it streamlines large-scale experimentation for users, ensuring con-
sistent execution, providing operational oversight, controlling costs, and implementing a
robust governance model [Fowler 2016].

Once defined, the Continuous Delivery and Continuous Integration (CI/CD)
pipelines act as key components that improve consistency and streamline execution with-
out compromising stability. This is achieved through automated tests and a unified
pipeline for all applications, abstracting low-level structures from users and facilitating
seamless integration among applications, including with monitoring systems derived from
the Grafana Labs Stack.

Within the observability context, monitoring, logging and traces are available by
default for all defined applications in a centralized location using Grafana. This automatic
configuration is facilitated partly by the Prometheus monitoring infrastructure and partly
by the Istio service mesh, ensuring a meticulous monitoring environment with minimal
development overhead.

1https://www.hashicorp.com/resources/what-is-mutable-vs-immutable-infrastructure



Finally, a unified load testing platform plays a critical role in experimentation.
Due to different application requirements, we created a single interface for two load test-
ing frameworks (namely, Locust and Gatling) allowing users to script tests using different
languages based on their familiarity. Due to integrations, the results are stored for an ex-
tended period (typically months), allowing for dynamic analysis concurrent with ongoing
tests [Awada 2018].

3. Discussion and Results

Through meticulous orchestration of these processes, we significantly reduce the likeli-
hood of errors across various categories. Errors are detectable at multiple stages prior to
final version approval.

The implementation of load-testing mechanisms facilitates a comprehensive ex-
amination of resource consumption patterns within the code base. These testing tools
offer a detailed perspective on the operational dynamics of the system, providing compre-
hensive visibility and insight across all layers, from infrastructure to application.

As a result , developers can focus their efforts on precise improvements within
the code base, focusing exclusively on segments requiring optimization. This approach
mitigates the need for extensive refactoring or modification of code segments that have
negligible discrepancies in metrics or observability points.

The future trajectory of monitoring practices within distributed systems suggests
a move toward greater independence. Traditional monitoring tasks, such as creating an-
alytic solutions, incident dashboards, alerts, and troubleshooting, have historically relied
heavily on manual efforts of expert analysts. These manual and repetitive tasks necessitate
an intuitive understanding of the monitoring landscape.

Figure 2. Socks-Shop Polyglot architecture
2

Figure 2 illustrates an experimental system depicting a virtual store with a diverse
stack of programming languages, frameworks, databases, and more. This system is used
together with the platform developed in a recent paper[Pulcinelli et al. 2023]. By utilizing
the PaaS model provided by our platform, users can seamlessly modify and conduct ex-
periments in a secure, parallel, and controlled manner. This facilitates agility, innovation,
and risk-free testing, ultimately improving the development and optimization processes.



Operational processes are gradually shifting towards greater automation. Al-
though many organizations in the distributed software domain currently handle day-to-day
operations manually, there is a growing need to adopt an event-driven paradigm. Events,
resulting from systemic interactions, provide developers with a comprehensive, top-down
view of the current state of the system.

The effectiveness of system testing and operation depends on several factors, such
as scale, contextual requisites, financial resources, and operational capacity. Achieving
optimal system validation isn’t always possible, highlighting the crucial importance of
automated pipelines, especially in the PaaS context.

These automated processes provide essential alternatives to potentially cumber-
some manual operations, streamlining tasks and ensuring unwavering consistency without
the need for numerous manual interventions. We anticipate that the articulated approach,
encompassing a distributed, resilient, observable, consistent, and secure platform model,
could act as a catalyst for the development of innovative platforms to support the operation
and foundation of complex systems.

4. Acknowledgment
We thank Amazon Web Services (AWS) for their generous sponsorship of our project, in
collaboration with the Laboratory of Distributed Systems and Concurrent Programming
at the Institute of Mathematical and Computer Sciences (ICMC). We also gratefully ac-
knowledge the financial support provided by the São Paulo State Research Foundation
(FAPESP) under grant #2019/26702-8.

References
Awada, U. (2018). Application-container orchestration tools and platform-as-a-service

clouds: A survey. International Journal of Advanced Computer Science and Applica-
tions.

Beyer, B., Murphy, N. R., Rensin, D. K., Kawahara, K., and Thorne, S. (2018). The site
reliability workbook: practical ways to implement SRE. ” O’Reilly Media, Inc.”.

Fowler, S. J. (2016). Production-ready microservices: building standardized systems
across an engineering organization. ” O’Reilly Media, Inc.”.

Pulcinelli, L. E. G., Pedroso, D. F., and Bruschi, S. M. (2023). Conceptual and compar-
ative analysis of application metrics in microservices. In 2023 International Sympo-
sium on Computer Architecture and High Performance Computing Workshops (SBAC-
PADW), pages 123–130.


