Analise Comparativa de Sintese de Alto Nivel para Algoritmos
de Multiplicacao de Matrizes em FPGA

Henrique Gregory Gimenez', Edson Toshimi Midorikawa'

Laboratério de Arquitetura e Computagio de Alto Desempenho
Departamento de Engenharia de Computagdo e Sistemas Digitais
da Escola Politécnica — Universidade de Sao Paulo (USP)

{henriquegregory, emidorik}Qusp.br

Resumo. Este artigo apresenta uma andlise comparativa de algoritmos de
multiplicacdo de matrizes (MM), denominados padrdo (baseline) e em blocos
(blocked), utilizando sintese de alto nivel (HLS). Foram avaliados os tempos de
execugcdo com a placa FPGA PYNQ-Z2. Também foi estudada a alocacdo de re-
cursos da FPGA em ambos os algoritmos apos a sintese. Os resultados mostram
que o algoritmo blocked em FPGA apresenta desempenho superior as demais
versoes para matrizes grandes, ao passo que também consome mais recursos
conforme o tamanho das matrizes de entrada aumenta.

1. Introducao

O processo de desenvolvimento de hardware tem crescido em complexidade, em
eficiéncia e em demanda ao longo dos anos. A sintese de alto nivel, High Level Synthesis
(HLS), permite aos desenvolvedores de hardware aumentarem o nivel de abstracao e fo-
carem suas atengdes em questdes arquiteturais dos projetos [Kastner et al. 2018]. O pro-
jetista escreve fungdes em linguagem de alto nivel como C/C++ que sejam sintetizdveis
em linguagem de descri¢ao de hardware como Verilog/VHDL.

Este estudo busca realizar uma comparagao entre dois algoritmos de MM: base-
line, o algoritmo iterativo mais simples, e blocked ou em blocos, baseado na divisdo das
matrizes originais de entrada em submatrizes e operando o algoritmo baseline nelas. Fo-
ram levantadas métricas sobre o tempo de execugao dos diferentes algoritmos, nas suas
versOes em hardware e em software, e sobre o uso dos recursos da FPGA ao sintetiza-los.
As andlises consideraram a influéncia do tamanho das matrizes de entrada sobre os re-
sultados. Ademais, as implementacdes dos algoritmos foram retiradas do repositorio de
[Lu and Chen 2024], desenvolvido pela Xilinx.

A sec¢do 2 discorre sobre trabalhos relacionados a multiplicacdo de matrizes em
FPGA utilizando HLS. Em seguida, a secdo 3 detalha o desenvolvimento e os resulta-
dos obtidos. Por fim, conclui-se o artigo na sec¢do 4 e perspectivas para futuros estudos
também sdo apresentadas.

2. Trabalhos Relacionados

Esta secdo apresenta trabalhos relacionados a esta pesquisa, sendo a lista limitada aos trés
artigos a seguir devido a restri¢cao de espaco.

Em [Skalicky et al. 2013], uma andlise de custo-beneficio foi realizada utilizando
ferramentas de HLS em FPGAs para implementar trés algoritmos de multiplicagdo de ma-
trizes: o algoritmo padrdo, o de Strassen e o de matrizes esparsas. E feita uma comparacao

entre os hardwares gerados pelo Vivado com circuitos customizados. A FPGA utilizada
no estudo foi a Xilinx Virtex 6-475T. Também foram realizados testes dos algoritmos em
software com o processador Intel Core i7 Sandy Bridge 3.4GHz.

[Leon-Vega and Castro-Godinez 2023] propuseram uma arquitetura aceleradora
genérica e configurdavel para Generic Matrix Multiplication-Additions (GEMMA), que
consiste em obter uma matriz de saida a partir de uma multiplicag@o entre duas matrizes
de entrada seguida da adi¢do de uma terceira matriz. A implementacao foi feita em C++
e as ferramentas Vitis e Vivado foram usadas para a sintese de alto nivel. O algoritmo
proposto visa diminuir o uso de recursos ao sintetizar em FPGA. A placa FPGA utilizada
foi a Avnet Zedboard (Xilinx ZYNQ XC77Z020).

O trabalho de [Meng et al. 2022] desenvolveu uma implementacao de operacoes
de matrizes de nimeros complexos em ponto flutuante. A operacao executada consiste
em multiplicar uma matriz de coeficientes de tamanho NxXN por um vetor de entrada
Nx1 para gerar uma saida Nx1. Um algoritmo em C++ gera nimeros aleatorios, realiza a
operacdo e produz valores de referéncia e que posteriormente sao utilizados para comparar
os resultados obtidos no médulo em hardware.

3. Desenvolvimento e Resultados Experimentais

3.1. Algoritmos Utilizados

O algoritmo baseline consiste no algoritmo mais elementar de multiplicagdo de matrizes.
Trés loops aninhados iteram sobre cada elemento das linhas da primeira matriz de entrada
e das colunas da segunda matriz de entrada, realizando o produto entre esses elementos
que, posteriormente, sdo somados para obter uma tnica posi¢ao da matriz resultante.

Ja a multiplicacdo de matrizes em blocos parte do mesmo principio do algoritmo
baseline, porém, para obter o produto final, as matrizes de entradas sdo particionadas. Por
exemplo, para multiplicar duas matrizes de tamanhos 128x128, pode-se dividir a matriz
A em quatro submatrizes de 128x32 e a matriz B em quatro submatrizes de 32x128 e
realizar operacOes paralelamente [Lu and Chen 2024].

3.2. Metodologia

As ferramentas Xilinx Vitis 2024.2 e Vivado 2024.2 foram utilizadas para a geracao do
HDL a partir dos cédigos bases em C++ e para a geracdo dos bitstreams programaveis
na FPGA, respectivamente. Os resultados deste artigo foram obtidos utilizando a placa
PYNQ-Z2 que € equipada com uma FPGA Zyng-7000 SoC XC7Z020-1CLG400C, além
de um processador dual-core ARM Cortex-A9 que permitiu avaliar os algoritmos nas suas
versdes em software.

Aplicou-se a seguinte metodologia: a biblioteca NumPy gera 5 matrizes aleatdrias
para cada uma das entradas A e B. Para cada plataforma (SW ou HW) e algoritmo (ba-
seline ou blocked), realiza-se a multiplicacdo de matrizes e verifica-se o tempo entre o
inicio e o fim da operacdo. Ao fim do processo, obtém-se 5 medidas de tempo diferentes
e a média aritmética é calculada. A biblioteca NumPy foi usada para gerar valores de
referéncia. Assim, uma matriz de saida obtida pela biblioteca é selecionada para compa-
rar com os valores de saida das demais plataformas, de modo a garantir a corretude das
operagoes.

3.3. Avaliacao de Desempenho

A figura 1 apresenta os tempos de execugdo para as cinco plataformas de testes e para
diferentes tamanhos de matrizes. Os valores obtidos pelo NumPy podem ser considera-
dos como valores de referéncia para a MM, dado que € uma biblioteca consolidada no
mercado e apresenta diversas otimizacoes.

Tempo Médio de Execugao por Tamanho de Entrada

,,,,,,

1072

107

Tempo Médio d

200 300
Tamanho das Matrizes

Figura 1. Grafico em escala logaritmica da média dos tempos de execug¢ao por
tamanho de matriz para diferentes plataformas

Os tempos de execucdo em software (baseline e blocked) apresentaram melhor
desempenho em relacao ao hardware até matrizes 8x8. A partir de 16x16, o HW blocked
mostrou tempos de execugdo entre 10 a 20 vezes menores que o HW baseline e o SW
baseline e blocked, ao passo que os tempos de HW baseline aumentam e passam a ter
o menor desempenho comparado aos demais. Ao mesmo tempo, todas plataformas e
tamanhos apresentam tempos de execugao maiores quando comparados aos obtidos pelo
NumPy, exceto o HW blocked que apresentou tempos até 20 vezes menores para matrizes
128x128 ou maiores.

3.4. Analise de Recursos Utilizados

A tabela 1 mostra o uso percentual de recursos da placa PYNQ-Z2 ao sintetizar os algorit-
mos baseline e blocked com diferentes tamanhos de matrizes de entrada, respectivamente.
Os recursos utilizados sdo os seguintes:

1. LUT: tabela de mapeamento entre entradas e saidas para operacdes ldgicas;

2. LUTRAM: variacdo das LUTs com capacidade de armazenamento, atuando como
pequenas RAMs;

FF: circuito sequencial que armazena dados até um sinal de controle (e.g., clock);
BRAM: moédulos de RAMs capazes de integrar com diferentes layouts e interfaces;
DSP: unidades para operagdes aritméticas e ldgicas (e.g., multiplicagdo, adi¢ao);
BUFG: buffer global que distribui sinais de clock pela FPGA.

NN kW

Durante os experimentos, constatou-se que o consumo de recursos do algoritmo
baseline € independente do tamanho da matriz de entrada. O uso de BUFG permanece
constante em ambos os algoritmos. Por outro lado, o algoritmo blocked utiliza mais
recursos conforme as matrizes de entrada crescem, tendo um aumento notavel a partir de
256x256. Nota-se também que para 256x256, o uso de DSP atinge 100%, de modo que

. - Blocked .

Recurso | Disponibilidade \— > ¢ 11676 [32x32 | 64x64 | 128x128 | 256x256 | 512x512 | Daseline
LUT 53200 2011 | 4,160 | 4,479 | 4,812 | 5,727 | 7.466 | 8594 | 18,000 | 59,633 | 4,523

LUTRAM 17400 1,132 | 1,178 | 1,282 | 2,609 | 4,161 | 7,103 | 7,167 | 12,966 | 17,603 | 1,109
FF 106400 2758 | 3,058 | 3,448 | 3251 | 4,004 | 5213 | 7552 | 15,734 | 36989 | 3414

BRAM 140 0714 | 0,714 | 0,714 | 1,071 | 1,071 | 1,071 | 1,071 | 1,071 100 0,714
DSP 220 0,909 | 1,818 | 3,636 | 7,273 | 14,545 | 29,091 | 58,182 | 100 100 1,364

BUFG 32 3,125 | 3,125 | 3,125 | 3,125 | 3,125 | 3,125 | 3,125 | 3,125 | 3125 | 3,125

Tabela 1. Utilizacado percentual dos recursos do algoritmo baseline e em blocos
para diferentes tamanhos de matrizes

para 512x512 o consumo de DSP permanece em 100% e o consumo de BRAM passa
de 1,071% para 100%. Nao foi possivel sintetizar o circuito para a MM em blocos para
matrizes maiores que 512x512.

4. Conclusao

Neste artigo, foram obtidos e analisados dados dos tempos de execucdo para dois algorit-
mos de multiplicacdo de matrizes, padrao (baseline) e em blocos (blocked), considerando
suas versoes em software e em hardware, sintetizadas por meio de HLS. Também foi estu-
dado o consumo de recursos de ambos os algoritmos ao sintetiza-los na placa PYNQ-Z2.

A multiplicacdo de matrizes HW blocked apresentou melhor desempenho sobre
todas as outras versdes para matrizes a partir de 16x16. Também foi visto que o uso de
recursos € constante para 0 HW baseline, ao passo que a alocagdo de recursos cresce com
o tamanho da matriz para o HW blocked.

Para trabalhos futuros, podem ser feitos: (i) estudo da influéncia do tamanho dos
blocos para um tamanho fixo de matriz na MM em blocos; (ii) estudo da estrutura do cir-
cuito RTL gerado pelo Vitis para outros algoritmos, por exemplo, MDC (méximo divisor
comum) e raiz quadrada inteira.

Referéncias

Kastner, R., Matai, J., and Neuendorffer, S. (2018). Parallel Programming for FPGAs.
ArXiv e-prints.

Leon-Vega, L. G. and Castro-Godinez, J. (2023). Generic accuracy configurable matrix
multiplication-addition accelerator using hls. Proceedings - 53rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks Workshops Volume,
DSN-W 2023, pages 171-174.

Lu, J. and Chen, W. (2024). High-level-synthesis design flow on zynq. Disponivel
em: https://github.com/Xilinx/xup_high_level_synthesis_
design_flow/tree/main.

Meng, X., Zhuang, W., Qin, Z., Yu, L., and Hou, G. (2022). The design and implemen-
tation of complex float matrix multiplication operation based on high-level synthesis.

Proceedings - 2022 International Conference on Computing, Robotics and System Sci-
ences, ICRSS 2022, pages 40-44.

Skalicky, S., Wood, C., Lukowiak, M., and Ryan, M. (2013). High level synthesis: Where
are we? a case study on matrix multiplication. 2013 International Conference on
Reconfigurable Computing and FPGAs, ReConFig 2013.

