
Análise Comparativa de Sı́ntese de Alto Nı́vel para Algoritmos
de Multiplicação de Matrizes em FPGA

Henrique Gregory Gimenez1, Edson Toshimi Midorikawa1

1Laboratório de Arquitetura e Computação de Alto Desempenho
Departamento de Engenharia de Computação e Sistemas Digitais

da Escola Politécnica – Universidade de São Paulo (USP)

{henriquegregory,emidorik}@usp.br

Resumo. Este artigo apresenta uma análise comparativa de algoritmos de
multiplicação de matrizes (MM), denominados padrão (baseline) e em blocos
(blocked), utilizando sı́ntese de alto nı́vel (HLS). Foram avaliados os tempos de
execução com a placa FPGA PYNQ-Z2. Também foi estudada a alocação de re-
cursos da FPGA em ambos os algoritmos após a sı́ntese. Os resultados mostram
que o algoritmo blocked em FPGA apresenta desempenho superior às demais
versões para matrizes grandes, ao passo que também consome mais recursos
conforme o tamanho das matrizes de entrada aumenta.

1. Introdução
O processo de desenvolvimento de hardware tem crescido em complexidade, em
eficiência e em demanda ao longo dos anos. A sı́ntese de alto nı́vel, High Level Synthesis
(HLS), permite aos desenvolvedores de hardware aumentarem o nı́vel de abstração e fo-
carem suas atenções em questões arquiteturais dos projetos [Kastner et al. 2018]. O pro-
jetista escreve funções em linguagem de alto nı́vel como C/C++ que sejam sintetizáveis
em linguagem de descrição de hardware como Verilog/VHDL.

Este estudo busca realizar uma comparação entre dois algoritmos de MM: base-
line, o algoritmo iterativo mais simples, e blocked ou em blocos, baseado na divisão das
matrizes originais de entrada em submatrizes e operando o algoritmo baseline nelas. Fo-
ram levantadas métricas sobre o tempo de execução dos diferentes algoritmos, nas suas
versões em hardware e em software, e sobre o uso dos recursos da FPGA ao sintetizá-los.
As análises consideraram a influência do tamanho das matrizes de entrada sobre os re-
sultados. Ademais, as implementações dos algoritmos foram retiradas do repositório de
[Lu and Chen 2024], desenvolvido pela Xilinx.

A seção 2 discorre sobre trabalhos relacionados à multiplicação de matrizes em
FPGA utilizando HLS. Em seguida, a seção 3 detalha o desenvolvimento e os resulta-
dos obtidos. Por fim, conclui-se o artigo na seção 4 e perspectivas para futuros estudos
também são apresentadas.

2. Trabalhos Relacionados
Esta seção apresenta trabalhos relacionados a esta pesquisa, sendo a lista limitada aos três
artigos a seguir devido à restrição de espaço.

Em [Skalicky et al. 2013], uma análise de custo-benefı́cio foi realizada utilizando
ferramentas de HLS em FPGAs para implementar três algoritmos de multiplicação de ma-
trizes: o algoritmo padrão, o de Strassen e o de matrizes esparsas. É feita uma comparação



entre os hardwares gerados pelo Vivado com circuitos customizados. A FPGA utilizada
no estudo foi a Xilinx Virtex 6-475T. Também foram realizados testes dos algoritmos em
software com o processador Intel Core i7 Sandy Bridge 3.4GHz.

[Leon-Vega and Castro-Godinez 2023] propuseram uma arquitetura aceleradora
genérica e configurável para Generic Matrix Multiplication-Additions (GEMMA), que
consiste em obter uma matriz de saı́da a partir de uma multiplicação entre duas matrizes
de entrada seguida da adição de uma terceira matriz. A implementação foi feita em C++
e as ferramentas Vitis e Vivado foram usadas para a sı́ntese de alto nı́vel. O algoritmo
proposto visa diminuir o uso de recursos ao sintetizar em FPGA. A placa FPGA utilizada
foi a Avnet Zedboard (Xilinx ZYNQ XC7Z020).

O trabalho de [Meng et al. 2022] desenvolveu uma implementação de operações
de matrizes de números complexos em ponto flutuante. A operação executada consiste
em multiplicar uma matriz de coeficientes de tamanho NxN por um vetor de entrada
Nx1 para gerar uma saı́da Nx1. Um algoritmo em C++ gera números aleatórios, realiza a
operação e produz valores de referência e que posteriormente são utilizados para comparar
os resultados obtidos no módulo em hardware.

3. Desenvolvimento e Resultados Experimentais

3.1. Algoritmos Utilizados

O algoritmo baseline consiste no algoritmo mais elementar de multiplicação de matrizes.
Três loops aninhados iteram sobre cada elemento das linhas da primeira matriz de entrada
e das colunas da segunda matriz de entrada, realizando o produto entre esses elementos
que, posteriormente, são somados para obter uma única posição da matriz resultante.

Já a multiplicação de matrizes em blocos parte do mesmo princı́pio do algoritmo
baseline, porém, para obter o produto final, as matrizes de entradas são particionadas. Por
exemplo, para multiplicar duas matrizes de tamanhos 128x128, pode-se dividir a matriz
A em quatro submatrizes de 128x32 e a matriz B em quatro submatrizes de 32x128 e
realizar operações paralelamente [Lu and Chen 2024].

3.2. Metodologia

As ferramentas Xilinx Vitis 2024.2 e Vivado 2024.2 foram utilizadas para a geração do
HDL a partir dos códigos bases em C++ e para a geração dos bitstreams programáveis
na FPGA, respectivamente. Os resultados deste artigo foram obtidos utilizando a placa
PYNQ-Z2 que é equipada com uma FPGA Zynq-7000 SoC XC7Z020-1CLG400C, além
de um processador dual-core ARM Cortex-A9 que permitiu avaliar os algoritmos nas suas
versões em software.

Aplicou-se a seguinte metodologia: a biblioteca NumPy gera 5 matrizes aleatórias
para cada uma das entradas A e B. Para cada plataforma (SW ou HW) e algoritmo (ba-
seline ou blocked), realiza-se a multiplicação de matrizes e verifica-se o tempo entre o
inı́cio e o fim da operação. Ao fim do processo, obtém-se 5 medidas de tempo diferentes
e a média aritmética é calculada. A biblioteca NumPy foi usada para gerar valores de
referência. Assim, uma matriz de saı́da obtida pela biblioteca é selecionada para compa-
rar com os valores de saı́da das demais plataformas, de modo a garantir a corretude das
operações.



3.3. Avaliação de Desempenho

A figura 1 apresenta os tempos de execução para as cinco plataformas de testes e para
diferentes tamanhos de matrizes. Os valores obtidos pelo NumPy podem ser considera-
dos como valores de referência para a MM, dado que é uma biblioteca consolidada no
mercado e apresenta diversas otimizações.

Figura 1. Gráfico em escala logarı́tmica da média dos tempos de execução por
tamanho de matriz para diferentes plataformas

Os tempos de execução em software (baseline e blocked) apresentaram melhor
desempenho em relação ao hardware até matrizes 8x8. A partir de 16x16, o HW blocked
mostrou tempos de execução entre 10 a 20 vezes menores que o HW baseline e o SW
baseline e blocked, ao passo que os tempos de HW baseline aumentam e passam a ter
o menor desempenho comparado aos demais. Ao mesmo tempo, todas plataformas e
tamanhos apresentam tempos de execução maiores quando comparados aos obtidos pelo
NumPy, exceto o HW blocked que apresentou tempos até 20 vezes menores para matrizes
128x128 ou maiores.

3.4. Análise de Recursos Utilizados

A tabela 1 mostra o uso percentual de recursos da placa PYNQ-Z2 ao sintetizar os algorit-
mos baseline e blocked com diferentes tamanhos de matrizes de entrada, respectivamente.
Os recursos utilizados são os seguintes:

1. LUT: tabela de mapeamento entre entradas e saı́das para operações lógicas;
2. LUTRAM: variação das LUTs com capacidade de armazenamento, atuando como

pequenas RAMs;
3. FF: circuito sequencial que armazena dados até um sinal de controle (e.g., clock);
4. BRAM: módulos de RAMs capazes de integrar com diferentes layouts e interfaces;
5. DSP: unidades para operações aritméticas e lógicas (e.g., multiplicação, adição);
6. BUFG: buffer global que distribui sinais de clock pela FPGA.

Durante os experimentos, constatou-se que o consumo de recursos do algoritmo
baseline é independente do tamanho da matriz de entrada. O uso de BUFG permanece
constante em ambos os algoritmos. Por outro lado, o algoritmo blocked utiliza mais
recursos conforme as matrizes de entrada crescem, tendo um aumento notável a partir de
256x256. Nota-se também que para 256x256, o uso de DSP atinge 100%, de modo que



Recurso Disponibilidade Blocked Baseline2x2 4x4 8x8 16x16 32x32 64x64 128x128 256x256 512x512
LUT 53200 4,011 4,160 4,479 4,812 5,727 7,466 8,594 18,009 59,633 4,523

LUTRAM 17400 1,132 1,178 1,282 2,609 4,161 7,103 7,167 12,966 17,603 1,109
FF 106400 2,758 3,058 3,448 3,251 4,004 5,213 7,552 15,734 36,989 3,414

BRAM 140 0,714 0,714 0,714 1,071 1,071 1,071 1,071 1,071 100 0,714
DSP 220 0,909 1,818 3,636 7,273 14,545 29,091 58,182 100 100 1,364

BUFG 32 3,125 3,125 3,125 3,125 3,125 3,125 3,125 3,125 3,125 3,125

Tabela 1. Utilização percentual dos recursos do algoritmo baseline e em blocos
para diferentes tamanhos de matrizes

para 512x512 o consumo de DSP permanece em 100% e o consumo de BRAM passa
de 1,071% para 100%. Não foi possı́vel sintetizar o circuito para a MM em blocos para
matrizes maiores que 512x512.

4. Conclusão
Neste artigo, foram obtidos e analisados dados dos tempos de execução para dois algorit-
mos de multiplicação de matrizes, padrão (baseline) e em blocos (blocked), considerando
suas versões em software e em hardware, sintetizadas por meio de HLS. Também foi estu-
dado o consumo de recursos de ambos os algoritmos ao sintetizá-los na placa PYNQ-Z2.

A multiplicação de matrizes HW blocked apresentou melhor desempenho sobre
todas as outras versões para matrizes a partir de 16x16. Também foi visto que o uso de
recursos é constante para o HW baseline, ao passo que a alocação de recursos cresce com
o tamanho da matriz para o HW blocked.

Para trabalhos futuros, podem ser feitos: (i) estudo da influência do tamanho dos
blocos para um tamanho fixo de matriz na MM em blocos; (ii) estudo da estrutura do cir-
cuito RTL gerado pelo Vitis para outros algoritmos, por exemplo, MDC (máximo divisor
comum) e raiz quadrada inteira.

Referências
Kastner, R., Matai, J., and Neuendorffer, S. (2018). Parallel Programming for FPGAs.

ArXiv e-prints.

Leon-Vega, L. G. and Castro-Godinez, J. (2023). Generic accuracy configurable matrix
multiplication-addition accelerator using hls. Proceedings - 53rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks Workshops Volume,
DSN-W 2023, pages 171–174.

Lu, J. and Chen, W. (2024). High-level-synthesis design flow on zynq. Disponı́vel
em: https://github.com/Xilinx/xup_high_level_synthesis_
design_flow/tree/main.

Meng, X., Zhuang, W., Qin, Z., Yu, L., and Hou, G. (2022). The design and implemen-
tation of complex float matrix multiplication operation based on high-level synthesis.
Proceedings - 2022 International Conference on Computing, Robotics and System Sci-
ences, ICRSS 2022, pages 40–44.

Skalicky, S., Wood, C., Lukowiak, M., and Ryan, M. (2013). High level synthesis: Where
are we? a case study on matrix multiplication. 2013 International Conference on
Reconfigurable Computing and FPGAs, ReConFig 2013.


