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Abstract. Approximate computing is a Computer Science field that improves
performance and energy efficiency at the expense of controlled precision re-
duction. In the context of training and validating classification neural networks,
investigating the impact of approximation on image quality is essential to de-
termine how much data degradation can be tolerated without compromising re-
sult validity. This work examines the acceptability and quality of results under
different levels of image approximation. We employ a residual neural network
(ResNet-50) [He et al. 2016] and evaluate it across various training and valida-
tion scenarios using both approximated and non-approximated images from the
Imagenette2 dataset [FastAI 2019]. Our objective is to investigate data accept-
ability thresholds and their relationship with the network’s prediction quality.
The results demonstrate the correlation between acceptability and accuracy in
neural network validation and training with approximated images. The ResNet-
50 [He et al. 2016] achieved accuracy ranging from (≥ 13.7% in scenarios with
high training divergence) to (≥ 68.6% in conditions similar or identical to train-
ing), proving that approximate computing can be viable when data similarity is
maintained - a crucial factor for energy-efficient and high-performance systems.

Resumo. A computação aproximada é uma área da Ciência da Computação
que busca aumentar o desempenho e a eficiência energética às custas de uma
redução controlada na precisão. No contexto do treinamento e validação de
redes neurais de classificação, investigar o impacto da aproximação na quali-
dade das imagens é crucial para determinar até que ponto podemos degradar
os dados sem comprometer a validade dos resultados. Este trabalho inves-
tiga a aceitabilidade e qualidade dos resultados frente a diferentes nı́veis de
aproximação em imagens. Para isso, foi utilizado uma rede neural residual
(ResNet-50) [He et al. 2016] e submetida a diferentes cenários de treinamento
e validação com imagens aproximadas e não aproximadas do dataset Ima-
genette2 [FastAI 2019]. O objetivo é investigar os nı́veis de aceitabilidade
dos dados e sua relação com a qualidade das previsões da rede. Os resulta-
dos obtidos evidenciam a relação entre aceitabilidade e qualidade na validação
e no treinamento de redes neurais com imagens aproximadas. A ResNet-50
[He et al. 2016] apresentou acurácia de (≥ 13.7% cenários com grande di-
vergência do treinamento) a (≥ 68.6% condições próximas ou iguais ao treina-
mento), demonstrando que a computação aproximada pode ser viável quando
mantida a similaridade dos dados - crucial para sistemas eficientes em energia
e desempenho.



1. Introdução

Sistemas aproximados oferecem maior eficiência na Computação, ao custo de precisão no
resultado final [Felzmann et al. 2021]. Nos dias atuais, a demanda por energia e poder de
processamento cresce exponencialmente [LoganKugler 2015], principalmente no cenário
da Inteligência Artificial (IA). Redes Neurais complexas exigem grande quantidade de
tempo e energia para serem treinadas, o que inviabiliza sua aplicação dependendo das
especificações do hardware disponı́vel.

O cenário atual da computação aproximada, em redes neurais, foca em tornar as
aproximações mais seguras e eficientes. Soluções como o AXNet [Peng et al. 2018] in-
tegram aproximador e preditor em uma única rede treinável, otimizando desempenho.
Ferramentas como o ApproxANN [Zhang et al. 2015] melhoram a tolerância a erros e a
eficiência energética no aprendizado profundo. Além disso, métodos de treinamento espe-
cializado para hardware aproximado como [Li et al. 2023] permitem acelerar o processo
em até 18 vezes. O trabalho de [Felzmann et al. 2021] ressalta também que a qualidade
dos dados aproximados deve ser avaliada com base na utilidade contextual, e não apenas
em métricas quantitativas.

A relação entre aceitabilidade e qualidade dos resultados obtidos pela validação de
uma rede neural treinada com aproximação em nı́vel de dados ainda é pouco explorada.
Compreender como a qualidade dos resultados se comporta diante desse tipo de abor-
dagem é essencial para avançarmos nos estudos sobre computação aproximada e suas
aplicações. Nesse sentido, é fundamental construir um conjunto de dados adequado, que
possibilite uma análise aprofundada sobre o impacto da computação aproximada em redes
neurais.

Esta pesquisa tem como objetivo investigar a relação entre a aceitabilidade dos
resultados e os nı́veis de aproximação dos dados de entrada de uma Rede Neural resid-
ual (ResNet-50). Busca-se demonstrar que a computação aproximada é uma estratégia
consciente e segura, desde que adaptada ao contexto da aplicação, contribuindo para uma
maior eficiência computacional sem comprometer significativamente a confiabilidade das
previsões.

A metodologia utilizada nesta pesquisa se fundamentou no uso de uma rede neu-
ral residual (ResNet-50) [He et al. 2016] e no dataset Imagenette2[FastAI 2019]. Foram
criados diferentes cenários de aproximação, tendo como principal técnica o algoritmo
Bitflip.

Os resultados mostram que a acurácia da rede neural depende diretamente do tipo
de dado usado no treinamento. Quando os dados de teste são semelhantes aos dados
aproximados usados no treino, a acurácia é maior. Por outro lado, ao testar com dados
precisos, a acurácia caiu de forma significativa. Também foi observado que quanto maior
o nı́vel de aproximação, mais difı́cil foi para a rede aprender.

Este trabalho demonstra que a computação aproximada pode ser uma estratégia
eficiente e segura para redes neurais quando adequada ao contexto de aplicação, compro-
vando que é possı́vel manter resultados aceitáveis mesmo com dados degradados.



2. Materiais e Métodos
Os principais materiais utilizados na pesquisa foram o dataset Imagenette2 e uma rede
neural residual (ResNet-50), previamente treinada no IMAGENET1K, disponı́vel por meio
do módulo torchvision.models da biblioteca PyTorch. Sobre o Imagenette2, foi
aplicada uma técnica de computação aproximada, sendo ela o algoritmo Bitflip. O algo-
ritmo Bitflip consiste em alterar um bit aleatório nos três octetos de cada canal RGB
dos pixels da imagem. Nesse contexto, utilizando o Bitflip, foram construı́dos difer-
entes cenários nos quais foram afetados 25%, 50% e 100% dos pixels da imagem. Para
cada percentual, foram criados subcenários em que a função de modificação foi apli-
cada 1x, 2x, 3x e 4x vezes, com o objetivo de simular diferentes nı́veis de perturbação
nos dados. Vale ressaltar que em técnicas de aproximação configuráveis, quanto maior a
quantidade de erros, como bitflips, maiores os possı́veis ganhos energéticos e de desem-
penho [Felzmann et al. 2020]. Por fim, a ResNet-50 foi treinada em todos os cenários,
incluindo o original (sem aproximação), com o conjunto de treino (train) do Imagenette2.
Os modelos foram comparados usando o conjunto de validação (val).

3. Resultados e Discussão
Ficou evidente, a partir dos resultados obtidos, que a computação aproximada no contexto
de redes neurais é fortemente dependente do cenário de treinamento. A Figura 1 mostra
que, quanto mais os dados de teste se assemelham ao contexto aproximado utilizado du-
rante o treinamento, maior é a acurácia obtida. Nesse sentido, um modelo treinado com
dados aproximados apresentou acurácia significativamente menor ao ser testado com da-
dos precisos, enquanto obteve melhor desempenho com dados também aproximados. Isso
evidencia que a rede neural tende a apresentar maior acurácia quanto mais próximo o
cenário de inferência estiver do cenário de treinamento, como ilustrado na Figura 1.

(a) Sem aproximação. (b) Aproximação 25% (1x).

(c) Aproximação 50% (2x). (d) Aproximação 100% (4x).

Figura 1. Acurácia dos diferentes modelos da (ResNet-50) em relação aos datasets aproximados e não aproximados.



Nesse contexto, vale destacar que, à medida que o nı́vel de aproximação se tornava
mais crı́tico, maior era a dificuldade encontrada pela rede para alcançar uma acurácia de
treinamento comparável à obtida com dados submetidos a aproximações mais leves ou
até mesmo sem aproximação, como demonstram as Figuras 1d e 1a. O cenário sem
aproximação apresentou uma acurácia de 84,3% (dentro do contexto de treinamento) 1a,
enquanto os cenários aproximados (fora do contexto de treinamento) obtiveram acurácias
menores, variando de 13,7% a 75,7%. Vale destacar que, mesmo com 100% de ruı́do apli-
cado 4 vezes, resultando em uma acurácia de 13,7% (1a), ainda foi possı́vel obter resul-
tados válidos, pois as alterações aleatórias preservaram traços visuais nas imagens. Esse
cenário se inverteu à medida que o contexto de aproximação se aproximava do contexto
de treinamento: a acurácia aumentava, enquanto o modelo sem aproximação apresentava
queda, chegando, no pior caso, a 49,9% (1d). Esses resultados reforçam o que foi discu-
tido anteriormente sobre a dependência do desempenho da rede em relação ao contexto
de treinamento.

4. Considerações Finais
O trabalho destacou que a relação entre aceitabilidade dos resultados está intimamente
ligada ao contexto e aos testes adequados, reforçando a hipótese de que a computação
aproximada pode ser segura e eficiente, desde que adaptada ao contexto e à utilidade
dos dados dentro desse mesmo cenário. Vale ressaltar que em técnicas de aproximação
configuráveis, quanto maior a quantidade de erros, como bitflips, maiores os possı́veis
ganhos energéticos e de desempenho [Felzmann et al. 2020].
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