
Parallel steganography benchmark for ValiPar concurrent

program testing tool

Silvia M. D. Diaz 1, Paulo S. L. de Souza1

1Institute of Computer and Mathematics Sciences - University of Sao Paulo (USP)

Sao Carlos - SP - Brazil

smdiazdiaz@usp.br, pssouza@icmc.usp.br

Abstract. The validation and verification of concurrent programs is a major

concern in software testing and parallel programming areas. Testing tools have

been an essential support for V&V tasks, and there are practices that allow

analysing and validating their different characteristics and limitations. Here

is where benchmarks come up with a solution with the goal of evaluating their

behavior. ValiPar is a tool that conducts structural testing for both shared and

distributed memory concurrent programs, and there is a set of benchmarks that

were developed to verify several aspects. However, it is required the evaluation

of the tool in regards of scalability, and the purpose of this work is to imple-

ment a real problem with a greater size algorithm to be tested in ValiPar, using

both memory access models and a larger number of interactions among pro-

cesses. This paper presents the results of a parallel steganography program

development and the results of its evaluation, finding that the tool achieved to

instrument and evaluate the parallel code but showed some limitations in the

execution of test cases.

1. Introduction

Given the current computational necessities and researches in concurrent software test-

ing, the tools that support it also require the implementation of strategies to improve their

functioning. ValiPar is a tool developed at the ICMC-USP, and supports the execution

of structural testing techniques for parallel programs in different programming languages

and both shared and distributed memory paradigms. Meanwhile, benchmarks are pro-

grams that are implemented with the objective of studying the behavior of testing tools.

For ValiPar, a set of benchmarks was developed considering critical characteristics of

concurrent programs [Dourado 2015]; most of them are simple common computational

problems, adapted and implemented with complex communication patterns. However,

the size of this programs is not as big as they could be to test scalability.

2. Background

The goal of this paper is to develop of a parallel algorithm in Java that supports the

verification of the scalability of ValiPar tool, and also contributes to a benchmark suite

developed in [Dourado 2015]. Nevertheless, most of the developed benchmarks are rela-

tively small-size programs of simple problems, whose main focus was the complexity of

communications, the implementation for both paradigms and the utilization of different

73



communication patterns. It is necessary to develop concurrent programs with a larger size

in terms of LOC, with greater input data and higher number of communications, leaving

aside the complexity of parallel events.

Steganography is a method to hide messages into objects, such as images, au-

dio files, videos, documents, etc. An image can be represented as a matrix of pixels,

which contains the code color information in the Red, Blue and Green (RGB) color

model for each pixel.There are different techniques for hiding a message into an image

[Shelke et al. 2014], and one of the most utilized is the Least Significant Bit (LSB), which

consists in making a substitution of the LSB of each RGB color byte with one bit from

the message. The algorithms of this paper will focus on the encoding of a plain message

using LSB image steganography and its decoding.

3. Proposal

This work presents the implementation of a parallel steganography algorithm using the

LSB technique with both memory access models and a larger size in terms of LOC, pro-

cesses and interactions, that can be evaluated with ValiPar tool by analyzing the results of

the execution of each one of its modules. Given that some limitations of ValiPar have not

been verified so far, and the fact that there are not many benchmarks that consider both

concurrent programming paradigms (or memory access models), this benchmark has the

objective of verifying the scalability of the tool, analyzing and evaluating its behavior

when there is a larger number of interactions. The resulting parallel programs were com-

pared to the main characteristics that a benchmark should accomplish [Dourado 2015];

this is important since it allows contrasting different programs by using standard features

to evaluate. To develop the concurrent program, it was performed an analysis of the prob-

lem structure and applied a parallel design methodology (PCAM).

The LSB steganography method was analysed and a sequential algorithm was de-

veloped; based on this, it was achieved a parallel design following Foster’s methodology

[Foster 1995] and the implementation of the parallel algorithm. For the ValiPar evalua-

tion, it was made a previous study of each module execution and scripts were generated

to facilitate this task. Moreover, the analysis of results contemplated different executions

and instrumentation possibilities in order to provide reliability in the conclusions.

4. Parallel design and development

Following the PCAM methodology [Foster 1995], the most suitable method for parti-

tioning was the domain decomposition, focusing on the data handled by the algorithm.

Both message string and pixel matrix were divided in equal n parts, which are the most

accessed and larger data structures. The objective behind this scheme is that each task pro-

cesses a part of the message with the corresponding matrix rows. For the agglomeration

phase, few tasks were combined. In the mapping phase, a Client-Server model was estab-

lished to characterize the interaction among processes. A static load-balancing strategy

was implemented by dividing the data in the number of Client processes. Connectionless

sockets (Java Datagram Sockets) were utilized for distributed memory and Java Threads

for shared memory, as libraries for parallel applications. Other ValiPar limitations were

contemplated in the development of the algorithms, such as in the implementation of li-

braries and loops. It is worth to say that these constrains complicate the utilization of any

74



Table 1. Parallel Steganography benchmark characteristics
Characteristic Accomplishment Values

Easy understanding x x x x x Yes

Interactions among processes x x x x x Uses, associations > 3.000.000

Test cases x x x x x Yes

Cyclomatic complexity x x x x x McCabe scale > 20

Program classification x x x x x Real problem

Primitives scope x x x x x Communication and synchronization primitives

Event based vision x x x x x Yes

Both paradigms x x x x x Distributed and shared memory

Communication patterns x x x x x Point to point, Client-Server

Non-determinism x x x x x Impractical

Pseudo-code x x x x x Yes

Standard documentation x x x x x Documented code

LOC x x x x x Encode and Decode > 1000

parallel program in ValiPar, since the non consideration of its limitations will make the

tool not be able to instrument the code and thus evaluate its coverage.

The encoding algorithm has a total of 5 processes and 16 threads; one Server and

four Clients (each with four threads). Server process reads the image and the message

and gets all of the Clients ports and addresses, so that it is able to fragment the data into

portions and send it to the corresponding Client. The sent data is a n size message portion

(n = total message length / number of Client processes) and a n x 3 pixel matrix, so each Client

receives the piece of data to hide and exactly the number of rows of the matrix to do so;

the complete image matrix is not sent since it would increase overheads by message size.

Each Client process converts the message to binary and creates four threads to process

the received data portion (data is shared among threads, but each treated a different sub-

portion). When all threads finished the modification of data, the Client processes send it

back to the Server process, which assembles the received data portion and inserts the new

pixels into the image and writes it to the specified directory.

The decoding algorithm works in accordance to the encoding algorithm commu-

nication basis, except for the Client processes, which do not create threads and extract the

message portion themselves. Server process concatenates the received message ensuring

that it is printed in order.

5. Benchmark characteristics

Table 1 presents the evaluation of the main characteristics that a benchmark program

should accomplish [Dourado 2015]. The column Accomplishment presents the level of

fulfillment of the feature and Value shows the resulting values of such aspects. Security

and complexity in the message hiding process were not considered in this benchmark,

since the main concern are the quantity of communications among processes and the size

of transferred data to validate scalability. The interactions among processes is high, which

reflects in the number of uses, associations and synchronization edges found by ValiPar

and also by the size of the Parallel Control Flow Graph (PCFG); on the other hand, the

number of LOC is greater compared to the existing benchmarks.

Despite non-determinism was present in the sent and receive executions, this situ-

ation had to be controlled in behalf of coupling the received packets in Server processes,

since pixel rows could not be saved in a different position from the original; as well as in

the decoding program, where the message could not be printed in other order.

75



6. ValiPar evaluation

Both coding and encoding algorithms were evaluated in ValiPar, as well as other similar

test programs with different communication patterns that were not shown in this paper. A

correct instrumentation of the two programs was verified by generating the PCFG and it

resulted in an extensive and limited-comprehensible graph, that made difficult the analysis

of the interactions among processes. Required elements and test cases were successfully

generated but when executing the ValiExec module, the program locked and could not

complete the test case execution. Hence, the evaluation of the covered elements could not

be accomplished since there was not information from the resulting executions.

Analysing the results, ValiPar got to instrument the programs and generate re-

quired elements, so it is able to interpret parallel programs with larger process interactions

and greater number of processes. However, there was found a limitation regarding the ex-

ecution of the test cases, presumably by the great quantity of interactions evidenced by the

PCFG. The ValiPar limitations were studied and adapted to the programs, and instrumen-

tation and test case generation were verified several times in order to provide reliability to

the concluding results.

7. Conclusion

It was developed a functional parallel steganography program (encoding and decoding)

that was successfully instrumented and evaluated in ValiPar tool; this allowed the analysis

of its behavior when there are a larger number of interactions among a greater number of

processes, using both memory access models. It also relates to a real problem and involves

a larger number of LOC. The parallel programs fulfilled the requirements of ValiPar tool

and allowed the generation of a PCFG that represented the quantity of interactions and

evidenced the great number of synchronization edges in the graph. The characteristics

of this benchmark were evaluated regarding the specifications in [Dourado 2015], and a

description document was developed as well. A limitation in the scalability of ValiPar

was found, given that the tool failed to execute the test cases for the programs; this is

a major finding and contribution to the current research, since it relies in the evaluation

of concurrent programs criteria that considers the identification of defects on dynamic

aspects. However, ValiPar should be evaluated in other environments and conditions to

verify the cause of the execution results, clarifying whether the ValiExec limitation was in

the benchmark development or the tool implementation, or if it was related to the machine

resources.

References

Dourado, G. G. M. (2015). Contribuindo para a Avaliação do Teste de Programas Con-

correntes: uma abordagem usando benchmarks. Master thesis, Instituto de Ciências

Matem´aticas e de Computação da Universidade de São Paulo.

Foster, I. (1995). Designing and Building Parallel Programs: Concepts and Tools for Par-

allel Software Engineering. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA.

Shelke, F. M., Dongre, A. A., and Soni, P. D. (2014). Comparison of different techniques

for Steganography in images. 3(2):171–176.

76


