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1 Department of Computer Science – UFS, 49100-000, São Cristóvão, SE, Brazil
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Abstract. Brazilian agricultural production presents a high degree of spatial
diversity, which challenges designing territorial public policies to promote sus-
tainable development. This article proposes a new approach to cluster Brazilian
municipalities according to their agricultural production. It combines a feature
extraction mechanism using Deep Learning based on Autoencoders and clus-
tering based on k-means and Self-Organizing Maps. We clustered the panel
data from IBGE’s annual estimates of Brazilian agricultural production be-
tween 1999 and 2018. The results show that in comparison with the ground
truth adopted, the autoencoder model combined with the Self-Organizing Maps
and the k-means algorithm presented a better result than clustering the raw data
using k-means. It demonstrated the ability of simple stacked autoencoders to re-
duce the dimensionality and create a new space of features in their latent layer
where the data can be analyzed and clustered.

1. Introduction
At the landscape level, Brazilian agricultural output exhibits various degrees of variation
[Sales and Rodrigues 2019]. Each region specializes in some agricultural activities, from
high-tech agribusiness to family farming [Teixeira and Ribeiro 2020], due to climate, wa-
ter resources, geographic limitations, and past socioeconomic processes. Furthermore,
this heterogeneity is visible at local and regional scales.

Grouping municipalities according to their shared agricultural production makes
it possible to identify the regional particularities that public authorities must consider
when creating territorial public policies. [Silva et al. 2022] divided the Brazilian munic-
ipalities into eight agricultural production diversity trend groups, each associated with a
distinct degree of native vegetation alteration, using clustering analysis and feature en-
gineering. Their work used the IBGE’s annual agricultural production estimates for the
years 1999 to 2018 to determine a diversity index based on Shannon’s entropy for each
category (animal herd, planted area with temporary crops, the production value for tem-
porary and permanent crops, aquaculture, silviculture, vegetal extractivism, and animal),
totaling eight variables for 20 years and 5570 municipalities. The raw spatial panel data



they used comprises 196 variables for 20 years. Adopting a feature engineering strategy
decreased the number of variables from 196 to 8 and eliminated various data issues like a
massive number of zeros and values close to zero. They then used a shallow learning tech-
nique to cluster the spatial panel data based on the Self-Organizing Map Artificial Neural
Network in conjunction with k-means. Their research provided compelling evidence for
the claim made by [Fatch et al. 2021] that low-diversified regions typically exhibit a low
degree of sustainability.

This paper used a Deep Learning strategy based on autoencoders to extract fea-
tures from raw Brazilian agricultural spatial panel data to cluster the municipalities. The
clustering obtained by [Silva et al. 2022] serves as the ground truth. Over the data pro-
jected on the new feature space, we used two classical clustering algorithms, k-means and
Self-Organizing Maps associated with the k-means. Deep learning is a consolidating field
in the industry, responsible for a significant transformation of data analytics, primarily
in image, video, and text processing. Still, there are many research challenges, such as
clustering using a deep learning technique known as deep clustering [LeCun et al. 2015].
Therefore, the research questions are: What would happen if we directly ran a clustering
analysis on the unprocessed panel data? How could we replace the feature engineering
employed by [Silva et al. 2022] with a Deep Learning feature extraction?

There are few works on tabular panel data, as in [Falissard et al. 2018], and clus-
tering analysis with autoencoders implies an empirical data-driven process. Then, the
most appropriate strategy for investigating how autoencoders can map the original tabular
panel data to a new latent feature space is incrementally adding complexity to the model.
Exploring data clustering directly from encoded data [Falissard et al. 2018], evaluating
the combination of objective and clustering loss functions [Song et al. 2014], and finally
testing more complex Deep Clustering propositions [Du et al. 2021, Xu et al. 2020].

We organized this paper as follows: section 2 discuss the dataset and the proposed
approach to feature extraction and spatial panel data clustering; section 3 shows the results
and discussion; and section 4 unveil the conclusions.

2. Data and methods

2.1. Spatial panel data

The dataset comprises 196 variables of IBGE’s annual estimates for all Brazilian mu-
nicipalities [IBGE 2021]. These variables correspond to eight groups: herd population,
animal production value, planted temporary crops, silviculture, aquaculture, vegetal ex-
tractivism, and temporary and permanent crop production value. A detailed data descrip-
tion can be found in [Silva et al. 2022].

We transformed the raw data as follows: a) each variable is associated with only
one category; b) for each observation (municipality-year), we calculate the sum for each
category; c) each variable is updated by dividing its value by the sum of the category
it belongs. In the end, each variable will correspond to the unit rate of that product for
each observation (municipality-year) (Fig. 1). After that, we linearly normalized the data
according to the min-max algorithm transforming all variables into the interval [0, 1].

The main characteristic of this dataset is the considerable presence of zeros. The
mean and median percentages of zeros per variable in the entire dataset are 83.09% and



Figure 1. We converted each variable to its unit rate according to the category
(e.g., herd or prodani) it belongs. Source: elaborated by the authors.
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Figure 2. a) Clustered municipalities based on the trajectory of Shannon’s diver-
sity indices onto a Self-Organizing Map by [Silva et al. 2022]. b) Mapping
only two trajectory clusters to highlight regional patterns of clusters ’B’
and ’E’. c) The same clustering for the Minas Gerais state, showing intra-
regional patterns. Source: elaborated by the authors.

91.49%, respectively. They are structural zeros because most municipalities produce a
limited amount of agricultural products, so no available data were set to zero. This unbal-
anced data challenges the learning process of artificial neural networks that are induced to
learn the zeros instead of the rest of the patterns. Initial tests showed that any autoencoder
structure models used in this research converged for symmetric and some asymmetric
(linear and quadratic) loss functions. Thus, this demanded investigating a suitable loss
function for a very sparse dataset.

2.2. Proposed approach

The proposed approach comprises two steps. In the first step, we defined a set of au-
toencoder models (section 2.2.1), and performed a parameterization of an asymmetric
loss function to cope with the data sparsity (section 2.2.2). The next step is responsible
for clustering the encoded data onto a new and low dimensional feature space for each
autoencoder model (section 2.2.3).



Table 1. Encoder layers structure (number of neurons per hidden layer). Source:
elaborated by the authors.

ID Latent* Encoder layers structure
I 500 3920-5000-3000-2000-1000-500
II 250 3920-5000-3000-2000-1000-500-250
III 100 3920-5000-3000-2000-1000-500-250-100
IV 50 3920-5000-3000-2000-1000-500-250-100-50
V 25 3920-5000-3000-2000-1000-500-250-100-50-25
VI 10 3920-5000-3000-2000-1000-500-250-100-50-25-10

*Number of neurons on the latent layer.

2.2.1. Autoencoder models

We have chosen six simple stacked undercomplete autoencoder models with the same
optimizer (adam), hidden and output activation functions (relu and sigmoid), fully con-
nected, with the same loss function, and varying the number of hidden layers and the size
of the latent layer (Fig. 3). Table 1 shows the number of the hidden layers to the encoder
component of each evaluated autoencoder, including the number of neurons on the latent
hidden layer.

Figure 3. General autoencoder structure used in this paper. Source: elaborated
by the authors.

2.2.2. Asymmetric loss function

Asymmetric loss functions are suitable for cases where bias is relevant or a consider-
able imbalance in data representation, as in our case (very sparse data), or fault detection
[Dress et al. 2018]. The most frequently used loss functions for regression are linear and



quadratic and have their asymmetric variants [Berk 2011]. The most relevant characteris-
tics of an asymmetric function are its capability to cope with different error situations and
directions. [Gupta et al. 2020] proposed an asymmetric function based on [Huber 1964]
that is quadratic when the error is small but is like mean absolute error when the error is
larger than a threshold.

As stated in section 2.1, the standard mean square error loss function and the
linear and quadratic asymmetric variant functions failed to guide the learning process of
the evaluated autoencoders to reach a convergence curve. Thus, we assessed the linear
exponential (LINEX) loss function that rises exponentially on one side of the zero and
almost linearly on the other side of the zero [Khatun and Matin 2020, Varian 1975].

The LINEX loss function is given by the Eq. 1, where x̂i represents the model-
based forecast of actual xi for case i, and a ̸= 0 is a constant that determines the degree of
asymmetry. The direction of the asymmetry can be defined by the signal of a or by change
the subtraction (xi − x̂i) by (x̂i − xi). For |a| → 0 then the LINEX(x̂i) → MSE(x̂i),
so the LINEX loss function could be thought of as an asymmetric generalization of
the mean squared error loss function [Mohammed et al. 2022, Khatun and Matin 2020,
Varian 1975].

LINEX(x̂i) =
1

n

n∑
i=1

2

a2

(
ea(xi−x̂i) − a(xi − x̂i)− 1

)
(1)

We evaluated a ∈ {5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0} using cross-validation
with hold-out method splitting the data into training (80%) and test (20%) datasets. We
observed that the autoencoders demonstrated some convergence for a ≥ 5.0.

2.2.3. Clustering encoded data

To establish a baseline, we clustered the transformed raw data using a k-means algo-
rithm based on joint-trajectories [Genolini et al. 2015] over all 5570 municipalities, 196
variables for 20 years, for k = 8 to be able to compare with the results obtained by
[Silva et al. 2022].

After defining the a value for the LINEX loss function, we performed Deep Learn-
ing using the entire dataset for each autoencoder model. We conducted clustering on the
encoded data using the k-means and the Self-Organizing Map (SOM) [Kohonen 2001]
for encoded data reduction and k-means on the SOM’s weights. To compare these
two methods, we used four clustering validity indices: Silhouette [Rousseeuw 1987],
Davies-Bouldin [Davies and Bouldin 1979] using centroids and medoids, and CDbw
[Halkidi and Vazirgiannis 2008]. We conducted all clustering considering k = 8.

The six deep clustering and the k-means were compared using an accuracy (ACC)
measure for the eight clusters (Eq. 2), where bi represents the ground truth for the mu-
nicipality i, ci the cluster obtained by the evaluated clustering method and m a mapping
function based on the Hungarian method [Kuhn 1955] to match ki and ci. A greater ACC
means a good match between our clustering and the one obtained by [Silva et al. 2022].



ACC = maxm

∑n
i=1 1(bi = m(ci))

n
(2)

To check for spatial dependence and regional and intra-regional distinction, we
mapped the clustering into the Brazilian municipal geographical map.

2.3. Software

We modeled the deep neural networks using Python and Keras framework, clustered using
R packages and used SOMPAK for the Self-Organizing Map processing. The geographi-
cal maps were generated by QGIS version 3.6.

3. Results and discussion

3.1. LINEX parameterization

Fig. 4 shows the mean loss for the train and test dataset for 30 runs (50 epochs each),
randomly changing train and test data. We observed these values considering the MSE
loss function and for different values for the a parameter for the LINEX loss function.
For all loss functions and datasets (train and test), the MSE is almost a horizontal line
denoting that the autoencoders did not converge with this loss function. For both training
and test datasets, the LINEX loss function with a = 7 presents the best result for all
autoencoder models. In fact, the performance decreases for a < 7 and a > 7.

3.2. Clustering encoded data Z

After defining a value for the LINEX loss function parameter a, we presented all datasets
to the deep learning process for each evaluated autoencoder model. After that, we encoded
the data reducing its dimensionality to the latent layer dimension. Then, we proceeded to
the clustering using two strategies: a) applying k-means over the encoded data; b) using
the Self-Organizing Map as an encoded data ordering and reduction and k-means over the
SOM’s weights after an unsupervised shallow learning process. We evaluated three SOM
sizes (8×6, 10×15, and 20×15), and we chose the big one because it presented the best
quantization error.

The clustering validity indices results for both k-means and SOM+kmeans strate-
gies suggest that we achieved the best solution with the lowest number of neurons in the
latent layer. The Davies-Bouldin presents the same behavior using centroids and medoids
as centrality references. Hence, they decay until the smallest values for the autoencoder
VI with 10 neurons on the latent layer. The Silhouette index increases while the number
of neurons on the latent layer decreases for both clustering methods. The CDbw valid-
ity index presents a more erratic behavior for the k-means clustering and a more smooth
curve for the SOM 20 × 15 + k-means approach. All this suggests that the autoencoder
would achieve the best data partition with fewer neurons on the latent layer. Still, an
inspection of the geographic projection and the accuracy measure shows that the autoen-
coder with more neurons on the latent layer clustered the Brazilian municipalities more
appropriately.

Fig. 5 shows the clustering accuracy when compared with the ground truth (Fig.
2a) for all autoencoder models and clustering algorithms. We observe that clustering using



Figure 4. Mean loss values for train and test data considering different loss func-
tions (MSE and LINEX for different a values) considering fifty runs for each
autoencoder model. Source: elaborated by the authors.

SOM + k-means strategy performed better in most situations, suggesting that clusters may
have a non-convex structure.

Figs. 6 (a) and (c) show the geographic mapping for the k-means partition over
the raw data X and for the best clustering considering the ACC as a metric. The k-
means clustering over the raw transformed data showed a solid regional spatial depen-
dence, highlighting a clear distinction between the semi-arid region, the states of Ama-
zon, Minas Gerais, and São Paulo, and the Brazilian South (Fig. 6a). The partition using
autoencoder+SOM+k-means also identified regional patterns, separating Minas Gerais
from the rest of the country. The Center-West was split into many groups, with Mato
Grosso do Sul showing more similarity with the Paraná state.



Figure 5. Clustering accuracy (ACC) considering the trajectory cluster from
[Silva et al. 2022] as the ground truth. Source: elaborated by the authors.

Figs. 6 (b) and (d) show intra-regional distinction in the Minas Gerais (MG)
Brazilian state for k-means and autoencoder+SOM+k-means strategies. The k-means
algorithm did not identify intra-regional patterns in MG and put in one group almost all
municipalities of the Center-West and North regions Fig. 6. The clustering based on
autoencoder+SOM+k-means identified more intra-regional patterns as observed in Minas
Gerais (MG) in Fig. 6d.

(a) k-means (b) Minas Gerais (MG)

(c) autoencoder I + SOM
+ k-means

(d) Minas Gerais (MG)

Figure 6. Geographic mapping of the k-means clustering applied directly over
the transformed raw data (a) and MG (b). Geographic mapping of deep
clustering for the autoencoder model I + SOM + k-means (c) and MG (d).
Source: elaborated by the authors.



4. Conclusions
Performing a clustering analysis over the raw data using a simple k-means algorithm
showed that the clusters divide the municipalities showing a huge regional partition but
did not identify any intra-regional distinctions. On the other hand, the Deep Clustering
proceeded in two steps. Dimensionality reduction by autoencoders and clustering of this
new data representation using SOM and k-means improved the general accuracy com-
pared to the k-means strategy over the raw data.

Future work should include evaluating larger latent layers and other nonlinear
dimensionality reduction techniques such as Isomap [Tenenbaum et al. 2000], and ker-
nel PCA [Müller et al. 2001], exploring other Deep Clustering techniques such as the
combination of objective and clustering loss functions as in [Song et al. 2014], the use
of multi-view clustering as in [Du et al. 2021], or using variational autoencoders as in
[Xu et al. 2020].
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Du, G., Zhou, L., Yang, Y., Lü, K., and Wang, L. (2021). Deep multiple auto-
encoder-based multi-view clustering. Data Science and Engineering, 6:323–338.
10.1007/s41019-021-00159-z.

Falissard, L., Faghreazzi, G., Howard, N., and Falissard, B. (2018). Deep clustering of
longitudinal data. ArXiv.

Fatch, P., Masangano, C., Hilger, T., Jordan, I., Mambo, I., Francesca, J., Kamoto, M.,
Kalimbira, A., and Nuppenau, E.-A. (2021). Holistic agricultural diversity index as
a measure of agricultural diversity: A cross-sectional study of smallholder farmers in
Lilongwe district of Malawi. Agricultural Systems, 187:102991.

Genolini, C., Alacoque, X., Sentenac, M., and Arnaud, C. (2015). kml and kml3d: R
packages to cluster longitudinal data. Journal of Statistical Software, 65(4):1–34.

Gupta, D., Hazarika, B. B., and Berlin, M. (2020). Robust regularized extreme learning
machine with asymmetric huber loss function. Neural Computing and Applications,
32:12971–12998.

Halkidi, M. and Vazirgiannis, M. (2008). A density-based cluster validity approach using
multi-representatives. Pattern Recognition Letters, 29:773–786.



Huber, P. J. (1964). Robust estimation of a location parameter. The Annals of Mathemat-
ical Statistics, 35(1):73–101.

IBGE (2021). Tabelas 74, 94, 289, 291, 1612, 1613, 3939 e 3940: sistema
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