
Modelo de Inteligência Computacional e Processamento de
Imagens para Interatividade Humano-Máquina Através de

Gestos
Kéwen dos S. Silva1, Marlysson S. Dantas1, Alcides X. Benicasa1

1Departamento de Sistemas de Informação – Universidade Federal de Sergipe (UFS)
Caixa Postal – 49.506-036 – Itabaiana – SE – Brasil

{kewensilva,marlay}@academico.ufs.br,alcides@ufs.br

Abstract. This paper presents a visual target recognition system using the
ESP32-CAM microcontroller in conjunction with remote processing via neu-
ral networks. The embedded device captures and transmits images to a server
for processing, where they are pre-processed, segmented, and classified using
a multilayer perceptron (MLP) implemented in PyTorch. The solution explores
the integration between embedded systems and artificial intelligence, optimi-
zing computational resources and reducing latency. Experiments demonstrate
the feasibility of the approach for low-cost intelligent monitoring applications.
The proposed architecture is modular and adaptable, favoring deployment in
various IoT contexts.

Resumo. Este artigo apresenta um sistema de reconhecimento de alvos visuais
utilizando o microcontrolador ESP32-CAM em conjunto com processamento
remoto via redes neurais. O dispositivo embarcado captura e envia imagens
para um servidor, onde são pré-processadas, segmentadas e classificadas por
uma rede MLP implementada em PyTorch. A solução integra sistemas embar-
cados com inteligência artificial, otimizando recursos computacionais e redu-
zindo a latência. Os experimentos demonstram a viabilidade da abordagem
para aplicações de monitoramento inteligente de baixo custo. A arquitetura
proposta é modular e adaptável a diferentes contextos da Internet das Coisas.

1. Introdução
A crescente expansão da Internet das Coisas (IoT) tem impulsionado a criação de dispo-
sitivos inteligentes capazes de interagir com o ambiente e com os usuários de maneiras
cada vez mais sofisticadas. Paralelamente, os avanços em Visão Computacional, um ramo
da Inteligência Artificial (IA), tornaram as técnicas de análise e interpretação de imagens
mais acessı́veis e poderosas. A combinação dessas áreas abre novas fronteiras para o
desenvolvimento de sistemas interativos, onde ações podem ser disparadas a partir da
interpretação de dados visuais capturados em tempo real.

Entretanto, um desafio significativo reside na implementação de algoritmos com-
plexos de processamento de imagens e IA em dispositivos com recursos computacionais
limitados, como os microcontroladores. Esses dispositivos são ideais para aplicações de
IoT devido ao seu baixo custo, tamanho reduzido e eficiência energética, mas não pos-
suem o poder de processamento necessário para executar tarefas como detecção e reco-
nhecimento de objetos em tempo real de forma autônoma.



Para superar essa limitação, este trabalho propõe o desenvolvimento de um mo-
delo computacional distribuı́do, utilizando um microcontrolador com câmera integrada, o
ESP32-CAM, para realizar a captura de cenas de um ambiente. Em vez de processar as
imagens localmente, o dispositivo as envia via protocolo HTTP para um servidor remoto.
Este servidor, com maior capacidade computacional, é responsável por aplicar técnicas de
processamento de imagens e inteligência artificial para detectar, segmentar e reconhecer
alvos previamente definidos.

Após o processamento, o servidor armazena as coordenadas dos alvos detectados
para que no envio de novas imagens seja possı́vel a detecção de interação com o ambiente
fı́sico. Essa abordagem busca oferecer uma solução viável e acessı́vel para aplicações em
sistemas distribuı́dos embarcados com reconhecimento visual, priorizando a eficiência
na transmissão de dados e na inferência remota, mantendo a simplicidade na arquitetura
local.

O objetivo geral deste projeto é, portanto, desenvolver e validar uma solução que
permita a um microcontrolador capturar imagens, delegar o processamento inteligente a
um serviço remoto e, com base na resposta recebida, executar ações de interação. Como
parte dos objetivos especı́ficos, o sistema deverá ser capaz de segmentar partes relevantes
da imagem, identificar interações com base na análise computacional e acionar respostas
adequadas, retornando, por exemplo, ações a serem executadas pelo microcontrolador.

Este artigo detalha a metodologia empregada, desde a escolha das tecnologias de
hardware e software até a arquitetura de comunicação entre o dispositivo embarcado e o
servidor. Serão apresentados os algoritmos de segmentação de imagem e a rede neural
desenvolvida para o reconhecimento dos alvos, seguidos pelos resultados experimentais e
discussões sobre o desempenho do modelo proposto.

2. Fundamentação Teórica
Esta seção apresenta os principais conceitos e tecnologias utilizados no desenvolvimento
da solução proposta, organizados em quatro eixos: comunicação em rede, Internet das
Coisas (IoT), processamento de imagens e inteligência artificial.

2.1. Protocolos de Comunicação
A comunicação entre os dispositivos no projeto é baseada no modelo TCP/IP. Destacam-
se os protocolos HTTP e MQTT. O HTTP é utilizado para o envio das imagens capturadas
pelo microcontrolador ao servidor, utilizando os métodos GET e POST. Já o MQTT,
protocolo leve voltado para IoT, é empregado na comunicação assı́ncrona entre o servidor
e o microcontrolador, com mensagens publicadas em tópicos gerenciados pelo broker
HiveMQ. Essa abordagem permite uma comunicação eficiente mesmo em redes instáveis
ou de baixa largura de banda.

2.2. Internet das Coisas (IoT)
Internet das Coisas (IoT), termo cunhado em 1999 por [Kramp et al. 2013], consolidou-
se como uma das mais significativas revoluções tecnológicas contemporâneas. Evoluindo
de conceito futurista para realidade presente.

Para [Magrani 2018], persistem importantes divergências conceituais sobre IoT,
inexistindo definição universalmente aceita. Em linhas gerais, caracteriza-se como um



ecossistema de objetos fı́sicos interconectados à internet mediante sensores compac-
tos e embutidos, criando um ambiente de computação onipresente (ubı́qua) orientado à
facilitação do cotidiano e introdução de soluções funcionais nos processos diários.

No projeto, o ESP32-CAM representa o nó IoT responsável pela captura de ima-
gens em tempo real, com envio para processamento remoto. Sua escolha se deve ao
baixo custo, integração com câmera e conectividade Wi-Fi, tornando-o adequado para
aplicações embarcadas de visão computacional.

2.3. API e Arquitetura de Servidor

A comunicação entre o microcontrolador e o servidor é intermediada por uma API REST
desenvolvida com o framework Flask, em Python. Essa API é responsável pelo recebi-
mento, armazenamento e encaminhamento das imagens para processamento. O servidor
utiliza o Nginx como proxy reverso, otimizando o balanceamento de carga e o acesso à
API. O sistema é containerizado com Docker, permitindo isolamento de ambientes, esca-
labilidade e fácil replicação em diferentes sistemas operacionais.

2.4. Processamento de Imagens

O processamento de imagens é realizado no servidor, utilizando a biblioteca OpenCV.
Inicialmente, as imagens são convertidas do espaço de cores RGB para HSV, mais ade-
quado à segmentação baseada em tonalidade. Técnicas como aplicação de máscaras,
remoção de ruı́do com filtro mediano e detecção de contornos são utilizadas para isolar
objetos com caracterı́sticas cromáticas especı́ficas (neste caso, objetos vermelhos). Após
a segmentação, as regiões de interesse são extraı́das para posterior análise e classificação.

2.5. Inteligência Artificial e Redes Neurais

Para [Luger 2004] a inteligência artificial (IA) pode ser definida como o ramo da ciência
da computação que se ocupa da automação do comportamento inteligente, isto conside-
rando a convicção de que a IA é uma parte da ciência da computação e, como tal, deve
ser fundamentada em sólidos princı́pios teóricos e práticos deste campo.

Sobre redes neurais, para [Haykin 2001] O cérebro é um computador (sistema
de processamento de informação) altamente complexo, não-linear e paralelo. Ele tem
a capacidade de organizar seus constituintes, estruturais, conhecidos por neurônios, de
forma a realizar diversos processamentos p.,.ex., reconhecimento de padrões., percepção
e controle motor).

De acordo com [Haykin 2001] a rede Multilayer Perceptron (MLP) possui
múltiplas camadas de neurônios. Basicamente, ela consiste de um conjunto de unida-
des sensoriais que constituem a camada de entrada, uma ou mais camadas ocultas de nós
computacionais e uma camada de saı́da de nós computacionais.

3. Metodologia
Esta seção descreve a abordagem adotada para o desenvolvimento da solução proposta,
abrangendo tanto os aspectos embarcados quanto os componentes do servidor. O sistema
foi estruturado com base em uma arquitetura distribuı́da, na qual a responsabilidade pela
captura das imagens recai sobre um microcontrolador, enquanto o processamento inteli-
gente ocorre remotamente em um servidor dedicado.



A metodologia adotada contempla a integração de diferentes tecnologias de hard-
ware e software, a definição dos protocolos de comunicação utilizados e a aplicação de
técnicas de visão computacional e inteligência artificial. Nos tópicos seguintes, são de-
talhadas a arquitetura do modelo, os processos de inicialização do microcontrolador, a
segmentação das imagens, os métodos de reconhecimento e os mecanismos de interação
com o ambiente.

3.1. Arquitetura do Modelo

A arquitetura proposta é composta por um microcontrolador ESP32-CAM, responsável
pela captura de imagens, e por uma estrutura de microsserviços em um servidor remoto,
encarregada do processamento dessas imagens e do gerenciamento dos dados. Além
disso, o servidor realiza o reconhecimento dos alvos presentes nas imagens e identifica
possı́veis interações com eles. Quando uma interação é detectada, o servidor responde
enviando comandos especı́ficos ao microcontrolador, que os executa em tempo real.

As imagens capturadas pelo microcontrolador são enviadas ao servidor por meio
do protocolo HTTP, utilizando requisições do tipo POST. Após o recebimento, o ser-
vidor realiza o processamento da imagem e responde com o status da operação. Já a
comunicação assı́ncrona é realizada via protocolo MQTT, permitindo que o servidor en-
vie comandos ao microcontrolador por meio de tópicos aos quais o dispositivo está previ-
amente inscrito. Essa abordagem garante maior eficiência na troca de mensagens simples
e em tempo real.

Esse modelo hı́brido de protocolos foi adotado visando maior flexibilidade na
comunicação com o microcontrolador. O protocolo HTTP, embora altamente eficiente
para o envio de imagens, devido à sua otimização e velocidade nesse tipo de transferência,
impõe um tempo máximo de resposta, o que pode ser problemático diante da variabili-
dade no tempo de processamento do servidor. Por outro lado, o protocolo MQTT é mais
indicado para o envio de mensagens simples, como comandos ou textos curtos, por ser
leve e eficiente em comunicações assı́ncronas. Diante disso, a combinação de ambos os
protocolos atende melhor aos requisitos do sistema, especialmente em contextos de tempo
real, nos quais a latência e a confiabilidade da comunicação são fatores crı́ticos.

A Figura 1 ilustra a interação entre os componentes do sistema.

Figura 1. Arquitetura do modelo proposto



3.1.1. Inicialização do Microcontrolador

O microcontrolador ESP32-CAM é responsável por capturar imagens e enviá-las ao ser-
vidor via protocolo HTTP. Sua inicialização segue a estrutura padrão de sistemas embar-
cados, com uma fase de configuração inicial e uma de execução contı́nua. Na fase inicial,
são realizadas as conexões Wi-Fi, o ajuste da câmera, a autenticação com o broker MQTT
e a sincronização do horário com um servidor externo.

Durante a execução contı́nua, o dispositivo verifica a conectividade com o broker
e realiza a captura e envio das imagens ao servidor.

A câmera OV2640, integrada ao ESP32-CAM, foi configurada com resolução Full
HD, proporcionando boa qualidade nas capturas sem comprometer o desempenho. Ajus-
tes como o número de quadros em buffer e o nı́vel de compressão JPEG foram definidos
para otimizar a transmissão via HTTP. Essa configuração garantiu estabilidade e quali-
dade mesmo em comparação a resoluções menores.

A captura e o envio de imagens, que ocorrem de forma cı́clica, com o microcon-
trolador realizando periodicamente a aquisição de uma nova imagem através do módulo
de câmera. Após a captura, os dados são preparados e transmitidos via protocolo HTTP
para uma API web previamente configurada.

Durante esse processo, são definidos cabeçalhos apropriados para o envio, como
o tipo do conteúdo (por exemplo, image/jpeg), e é feito o tratamento das respostas
HTTP para assegurar que as imagens foram corretamente recebidas e processadas pelo
servidor. Em caso de falhas, o sistema é capaz de registrar e identificar o erro, garantindo
maior robustez na transmissão dos dados.

3.1.2. Segmentação de imagens

A etapa de segmentação de imagens nesta pesquisa exigiu o uso de técnicas de pré-
processamento, como ajustes dimensionais, tratamento de cores e controle de pixels, para
preparar adequadamente os dados para análise. As imagens são capturadas e enviadas
pelo ESP32-CAM, sendo transmitidas via protocolo HTTP para uma API, que realiza
todo o tratamento prévio.

O algoritmo de segmentação implementado é baseado em cores e utiliza processa-
mento digital de imagens para identificar e isolar objetos com caracterı́sticas cromáticas
especı́ficas. Para isso, as imagens são convertidas do espaço de cores RGB para HSV, o
que permite maior robustez na detecção de tonalidades, especialmente em condições de
iluminação variáveis. A segmentação foca na cor vermelha, com aplicação de máscaras
que isolam regiões da imagem com essa tonalidade.

Funções auxiliares são responsáveis por carregar imagens, converter espaços de
cores e remover ruı́dos. A conversão RGB para HSV é feita utilizando a biblioteca
OpenCV, essencial para separar tonalidade (matiz) de brilho e saturação. A remoção
de ruı́dos é realizada com filtro mediano, eficaz contra ruı́dos do tipo ”sal e pimenta”,
preservando as bordas dos objetos. Já a criação das máscaras baseia-se em uma cor de
referência convertida para HSV e aplicada com margens de variação, isolando os objetos
desejados.



Figura 2. Alvos segmentadas

Fonte: Autoria própria.

A função principal do algoritmo segue uma sequência lógica: carrega a imagem,
converte para HSV, aplica múltiplas máscaras com variações da cor vermelha, combina
essas máscaras, aplica o filtro de ruı́do e realiza a detecção e filtragem dos contornos en-
contrados. Cada objeto detectado é verificado quanto ao seu tamanho, sendo descartados
os que estão abaixo de um limiar mı́nimo, considerados ruı́dos.

O sistema também permite o processamento em lote de várias imagens, com
parâmetros ajustáveis como variação de tonalidade, intensidade do filtro e tamanho
mı́nimo do objeto. Essa abordagem possibilita testar a robustez da segmentação em dife-
rentes condições. Além disso, a estratégia de usar múltiplas definições da cor vermelha
combinadas aumenta a precisão na identificação dos objetos-alvo.

Por fim, o algoritmo implementa duas camadas de filtragem, remoção de ruı́do e
verificação do tamanho dos segmentos, garantindo que apenas os objetos relevantes sejam
considerados na análise. A estrutura modular do código, com funções bem definidas,
facilita sua manutenção e expansão para aplicações mais complexas.

3.1.3. Reconhecimento de alvos

A tarefa de reconhecimento de alvos foi implementada por meio de uma rede neural do
tipo Multilayer Perceptron (MLP), desenvolvida com o framework PyTorch. A MLP
utilizada é composta exclusivamente por camadas lineares densamente conectadas (fully
connected layers), sendo alimentada com imagens previamente segmentadas e submetidas
a um processo de transformação, o qual inclui conversão para escala de cinza, redimensi-
onamento para 64×64 pixels e conversão para tensores.

O conjunto de dados foi estruturado em diretórios separados por classe, corres-
pondentes às categorias: lâmpada, colcheias, floco, hélice e televisão. Essa organização
foi utilizada tanto para o treinamento quanto para a validação do modelo por meio do
K-fold.

A arquitetura final adotada no experimento consiste em uma entrada com 4096
unidades (relativas aos 64×64 pixels da imagem em tons de cinza), uma camada oculta
com 256 neurônios, função de ativação ReLU, e uma camada de saı́da com 5 neurônios
— um para cada classe.



Essa abordagem permitiu realizar o reconhecimento de objetos simples com bom
desempenho, validando a viabilidade de aplicar modelos de IA leves em arquiteturas dis-
tribuı́das com microcontroladores e servidores.

A etapa de reconhecimento dos alvos foi conduzida por meio de redes neurais
artificiais, dada sua capacidade de identificar padrões complexos. Utilizou-se a biblio-
teca PyTorch, com a classe torch.nn.Linear para representar camadas densas. Essa
camada aplica uma transformação linear da forma:

y =
n∑

i=1

xi · wi + b

em que xi são as entradas, wi os pesos, b o viés e y a saı́da.

Como entrada, o modelo recebe imagens convertidas em vetores unidimensionais
utilizando torch.nn.Flatten. A função de ativação escolhida foi a ReLU (Rectified
Linear Unit), que introduz não linearidade à rede:

ReLU(x) = max(0, x)

As imagens foram organizadas em cinco classes e processadas com as
transformações: Grayscale, Resize (64×64) e ToTensor. Para o treinamento,
utilizou-se a função de perda CrossEntropyLoss, comum em tarefas de classificação.
Essa função mede a divergência entre a predição e o rótulo correto, assumindo a ativação
Softmax:

L = − log(py)

onde py é a probabilidade prevista para a classe correta.

O processo de treinamento foi realizado com o otimizador Adam, por meio de uma
função que percorre várias épocas. Em cada época, o modelo realiza predições, calcula a
perda, aplica retropropagação e atualiza os pesos.

Para avaliação, adotou-se como referência o valor de perda inicial esperado de
log(5) ≈ 1,61, correspondente a uma rede sem aprendizado (acurácia de 20%). Valores
de perda abaixo desse indicam aprendizado, classificados em intervalos: 1,5–1,7 (baixo
desempenho), 1,0–1,5 (aprendizado inicial), 0,7–1,0 (aprendizado moderado), 0,3–0,7
(boa performance) e abaixo de 0,3 (alto desempenho).

3.1.4. Interação com os alvos

A interação com os alvos é o principal objetivo funcional do sistema proposto e constitui
a etapa atual de desenvolvimento. Neste estágio, dois métodos distintos estão sendo tes-
tados para verificar a tentativa de interação do usuário com os elementos identificados na
imagem.

O primeiro método baseia-se na comparação entre histogramas de matiz (Hue)
no espaço de cor HSV. O procedimento consiste na comparação entre uma imagem base



do objeto segmentado e outra obtida durante a tentativa de interação. Ambas são con-
vertidas para o espaço HSV, e seus histogramas de matiz são extraı́dos, normalizados e
comparados por meio da distância do cosseno. Caso a dissimilaridade ultrapasse um li-
miar predefinido (por exemplo, 0,6), considera-se que houve uma tentativa de interação.
Gráficos comparativos são gerados para apoiar a análise visual dos resultados.

No segundo método, a tentativa de interação é tratada como uma nova classe no
processo de classificação. Para isso, foi criada a classe ”interação”, composta por imagens
em que o alvo identificado está parcialmente encoberto, como, por exemplo, pela presença
de uma mão. O modelo é então treinado para distinguir as classes originais dos alvos e
a nova classe de interação, permitindo que o sistema reconheça diretamente, por meio da
rede neural, quando ocorre uma tentativa de interação por alteração visual no alvo.

Como mencionado na Seção 3.1.3, temos definidos cinco alvos, e o significado de
cada um deles dependerá da estrutura externa e do comportamento programado no mi-
crocontrolador. Por exemplo, o reconhecimento do alvo ”lâmpada”pode ser interpretado
como um comando para acionar uma única lâmpada ou um conjunto delas, a depender do
contexto e da lógica embarcada no sistema. Dessa forma, o sistema é flexı́vel e permite
que cada alvo represente diferentes ações, conforme as necessidades da aplicação.

4. Resultados Parciais
No estágio atual do projeto, o microcontrolador ESP32-CAM envia as imagens direta-
mente para o servidor/API em qualidade HD+ (1600x900). Essa alta resolução foi man-
tida graças à arquitetura hı́brida de protocolos adotada, na qual o protocolo HTTP é uti-
lizado para o envio das imagens. Essa escolha proporcionou uma transmissão rápida e
mais robusta para arquivos de maior tamanho, o que não seria viável utilizando apenas o
protocolo MQTT, que é mais adequado para dados leves e de baixa latência. Para uma
realizar uma decisão eficiente, foi realizado testes com o envio das imagens utilizando
ambos os protocolos, MQTT e HTTP, como na figura 1 abaixo .

Figura 3. Comparação do Total de Requisições HTTP X MQTT



Houve uma diferença nı́tida entre os protocolos. Embora os testes tenham sido
realizados com a resolução mais baixa, o protocolo MQTT é projetado para mensagens
pequenas e leves, enquanto o HTTP lida melhor com grande volumes de dados, como
imagens.

Além do envio das imagens, o servidor/API também é responsável por todo o pro-
cessamento posterior, iniciando pela etapa de segmentação dos alvos. Nesse processo, as
imagens recebidas passam por uma série de etapas de pré-processamento, que incluem re-
dimensionamento, correção e conversão de cores, além do controle do tamanho dos pixels.
Essas operações são essenciais para padronizar e preparar adequadamente os dados visu-
ais, garantindo que estejam em condições ideais para as fases seguintes de segmentação e
análise. Com os ajustes corretos aplicados, o algoritmo de segmentação consegue isolar
com precisão apenas os elementos de interesse (alvos) eliminando ruı́dos e informações
irrelevantes à tarefa proposta.

Por meio de algoritmos de aprendizado de máquina, foi possı́vel treinar o mo-
delo responsável pelo reconhecimento dos alvos diretamente na API. Antes da definição
final do modelo, utilizou-se a técnica de validação cruzada K-Folds com o objetivo de
obter uma avaliação mais robusta e confiável do desempenho durante o treinamento. Essa
abordagem permite dividir o conjunto de dados em múltiplas partições, alternando entre
conjuntos de treino e teste, o que contribui para uma melhor generalização do modelo. A
partir dessa validação, é possı́vel observar a quantidade ideal de épocas necessárias para
atingir uma perda mı́nima, a acurácia média obtida e a taxa de aprendizado por época.
Além disso, durante o processo de treinamento, são geradas matrizes de confusão que
permitem uma análise mais detalhada sobre os acertos e erros do modelo, fornecendo
uma visão clara sobre seu comportamento e desempenho na classificação dos alvos.

Nos testes parciais realizados até o momento, o método que utiliza uma rede neu-
ral com uma classe adicional denominada ”interação”apresentou desempenho superior.
Nesse método, imagens contendo uma mão cobrindo o alvo são rotuladas como interação
e utilizadas no treinamento da rede. Enquanto o método baseado na dissimilaridade de
histogramas apresentou valores médios entre 0,75 e 0,85 para casos de interação, a rede
neural alcançou taxas de acerto entre 98% e 99% na classificação dessas imagens como
interação. Esses resultados indicam, até o estágio atual do projeto, uma vantagem signifi-
cativa do segundo método em termos de precisão.

Portanto, este projeto, desenvolvido no contexto de um sistema embarcado com
microcontrolador ESP32-CAM e processamento remoto via API, configura-se como uma
solução inovadora para o reconhecimento de alvos em tempo real.

O sistema permite uma avaliação precisa do desempenho do modelo de aprendi-
zado, utilizando métricas de perda e acurácia que refletem sua evolução desde os estágios
iniciais até nı́veis mais avançados, assegurando a confiabilidade da classificação dos al-
vos.

A arquitetura adotada, a qual integra um microcontrolador compacto, envio de
imagens por HTTP, respostas e comandos via protocolo MQTT, e processamento reali-
zado com Flask e PyTorch, demonstra-se eficiente, escalável e flexı́vel, oferecendo uma
base sólida para futuras expansões e adaptações a novos cenários.

Essa combinação tecnológica evidencia o potencial da integração entre hardware



embarcado e inteligência artificial, promovendo uma automação inteligente com uso oti-
mizado de recursos. O projeto pode ser facilmente adaptado a diferentes dispositivos
e aplicações, contribuindo significativamente para o avanço da visão computacional no
contexto de sistemas IoT.

5. Conclusão
Com base nos resultados obtidos até o momento, o projeto tem demonstrado a viabili-
dade da integração entre tecnologias de IoT e APIs para realizar, de forma eficiente, a
captura, o envio, o processamento de imagens e o reconhecimento de alvos. Através do
sistema embarcado, foi possı́vel capturar imagens em tempo real utilizando o microcon-
trolador ESP32-CAM, que as envia ao servidor por meio do protocolo HTTP. No servidor,
que dispõe de maior capacidade computacional em comparação ao microcontrolador, as
imagens são processadas com etapas de segmentação e detecção dos alvos. Após o pro-
cessamento, comandos especı́ficos são gerados e enviados de volta ao microcontrolador
utilizando o protocolo MQTT, completando o ciclo de comunicação e controle entre os
dispositivos. Essa integração evidencia o potencial da arquitetura proposta para aplicações
em visão computacional embarcada e automação inteligente.

Por fim, vale ressaltar que o projeto ainda está em desenvolvimento e não se
encontra totalmente finalizado. Como etapas futuras, está prevista a conclusão da
implementação do reconhecimento de interação com os alvos detectados, permitindo
que uma pessoa interaja com um determinado alvo e realize uma ação previamente defi-
nida. Além disso, será incorporado o reconhecimento facial, com o objetivo de autenticar
usuários e adicionar uma camada extra de segurança e personalização ao sistema.

Referências
Haykin, S. (2001). Redes Neurais: Princı́pios e Prática. Bookman, Porto Alegre, 2

edition. Tradução do original: Neural Networks: A Comprehensive Foundation.

Kramp, T., Van Kranenburg, R., and Lange, S. (2013). Introduction to the internet of
things. Enabling things to talk: Designing IoT solutions with the IoT architectural
reference model, pages 1–10.

Luger, G. F. (2004). Inteligência Artificial: estruturas e estratégias para a solução de
problemas complexos. Bookman, Porto Alegre, 4 edition. Tradução da obra original
*Artificial Intelligence: Structures and Strategies for Complex Problem Solving*.

Magrani, E. (2018). A Internet das Coisas. FGV Editora, Rio de Janeiro.


