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Abstract. This work compares data pipelines using image files in PNG format
and Deep Lake for medical images (SHdataset) through performance bench-
marks and a Deep Metric Learning (DML) case study to analyze performance
and effectiveness trade-offs. Results indicate that Deep Lake, while faster in
data iteration, required 59.2% more storage; although it produced a model of
comparable quality, the image file-based approach yielded a feature space with
marginally superior quantitative separability. We conclude that modern formats
present a trade-off between management benefits and storage/optimization costs
while largely preserving model effectiveness.

Resumo. Este trabalho compara pipelines de dados utilizando arquivos de ima-
gem no formato PNG e o Deep Lake para imagens médicas (SHdataset) através
de benchmarks de desempenho e de um estudo de caso com Deep Metric Le-
arning (DML) para analisar os trade-offs de eficdcia e performance. O Deep
Lake, embora mais rdpido na iteragdo de dados, exigiu 59,2% mais armazena-
mento; apesar de produzir um modelo de qualidade compardvel, a abordagem
com arquivos de imagem gerou um espaco de caracteristicas com separabili-
dade quantitativa marginalmente superior. Conclui-se que formatos modernos
apresentam um trade-off entre beneficios de gerenciamento e custos de armaze-
namento e otimiza¢do, mas preservam em grande parte a eficdcia do modelo.

1. Introducao

Doencas socialmente determinadas sdo assim denominadas porque sua ocorréncia,
distribuicdo e gravidade estdo profundamente vinculadas a fatores socioecondmicos,
como acesso a saneamento basico, educacao, renda e condi¢des de moradia. O avango do
deep learning tem se mostrado um poderoso aliado no enfrentamento dessas enfermida-
des, transformando a andlise de imagens médicas e permitindo avangos significativos no
diagnostico e na pesquisa [Litjens et al. 2017].

A aplicagao dessas técnicas em cendrios de larga escala gera um volume massivo
de dados (Big Data), cuja gestdo eficiente se torna um desafio central [Hu et al. 2014]. A
forma como esses datasets sdo estruturados, armazenados e acessados nao € apenas um
detalhe técnico, mas um pilar fundamental, influenciando a reprodutibilidade dos resulta-
dos.



Tradicionalmente, os pipelines de dados para visdo computacional sdo construidos
sobre uma premissa simples: um diretdrio contendo milhares ou milhdes de arquivos de
imagem individuais (ex: PNG, JPEG). Esta abordagem, embora direta, impoe gargalos
operacionais. A sobrecarga de I/O (entrada/saida) para ler um grande nimero de arquivos
pequenos retarda o treinamento, enquanto o versionamento do dataset torna-se uma tarefa
manual, complexa e propensa a erros [Amershi et al. 2019]. Essas limitacdes evidenciam
a necessidade de arquiteturas de dados mais sofisticadas.

Em resposta, surgiram  arquiteturas como o Data  Lakehouse
[Armbrust et al. 2021], com implementacdes especializadas para IA como o Deep
Lake [Hambardzumyan et al. 2022], que prometem um ecossistema de gerenciamento de
dados mais robusto. Elas propdem uma mudanga de paradigma: em vez de uma cole¢cdo
de arquivos, o dataset € tratado como um artefato de dados unico e transacional, otimizado
para streaming rdpido e com versionamento integrado. Essa abordagem promete nao
apenas ganhos de desempenho, mas também um ecossistema de gerenciamento de dados
mais robusto e auditdvel. Contudo, a ado¢@o de novas tecnologias exige uma andlise
pratica de seus trade-offs, que vao além dos benchmarks de I/O e devem incluir o impacto
na otimizagao do modelo.

Este trabalho realiza uma anélise comparativa e pratica entre um pipeline de da-
dos tradicional, baseado em imagens armazenadas em disco, € um pipeline moderno uti-
lizando a arquitetura Deep Lake. A comparacdo é conduzida sob duas Gticas principais,
utilizando o SHdataset [Oyibo et al. 2023] de imagens microscOpicas: (1) benchmarks de
desempenho, focados em espaco de armazenamento e velocidade de iteracdo; e (2) um
estudo de caso aprofundado com Deep Metric Learning (DML), utilizando a abordagem
de Triplet Loss [Schroff et al. 2015], que avalia e compara as caracteristicas quantitativas
e qualitativas dos modelos resultantes de cada pipeline.

2. Referencial Teorico

2.1. Base de Dados Utilizada

Este estudo utiliza a base de dados publica SHdataset [Oyibo et al. 2023], que contém
12.051 imagens microscopicas de ovos de Schistosoma Haematobium, doenga parasitdria
de alto impacto em regides com recursos limitados. As amostras foram coletadas como
parte de um estudo de campo em Abuja, Nigéria. O estudo envolveu a amostra de urina
de criancas em idade escolar que apresentavam hematuria.

O processamento de amostras seguiu o procedimento padrao, onde 10 mL de urina
foram passados por uma membrana de filtro de 13mm de didmetro com poros de 0,2 pm.
Entdo, a membrana foi montada em lamina de microscopia para aquisicdo de imagens,
onde se foi utilizado o microscopio digital ’Schistoscope”.

2.2. Gerenciamento de Grandes Volumes de Imagens Médicas

Segundo [Yousef Ameen Esmail Ahmed et al. 2023] e [Deheyab et al. 2022], o proces-
samento de imagens médicas tornou-se uma area fundamental na computacdo con-
temporanea, oferecendo suporte ao diagndstico médico por meio de ferramentas para
deteccao automadtica. No entanto, os avangos tecnoldgicos em dispositivos de aquisi¢ao
de imagens resultaram em um crescimento na quantidade de dados gerados. Este volume



crescente de dados, juntamente com a necessidade de andlises em tempo real, é uma ca-
racteristica do big data. As imagens médicas se encaixam nesse paradigma, contribuindo
para o aumento de dados de dominios distintos.

Além do volume, o big data apresenta caracteristicas como a variedade (dados es-
truturados, semiestruturados e ndo estruturados) e a velocidade de geracdo. Em dominios
como imagens médicas, os dados frequentemente incluem formatos complexos e ndo ta-
bulares, como imagens e videos, que ndo se encaixam bem em estruturas relacionais
tradicionais [Armbrust et al. 2021]. Os sistemas tradicionais de gerenciamento de da-
dos, baseados principalmente em sistemas de gerenciamento de banco de dados relacio-
nais (RDBMS), sdo inadequados para lidar com o volume e a variedade inerentes ao big
data, oferecendo pouco suporte para dados ndo estruturados ou semiestruturados e nao
escalando de forma adequada com hardware comum para lidar com o volume crescente
[Hu et al. 2014].

Como consequéncia, novas metodologias e arquiteturas de dados sdo necessarias
para lidar com Big Data. No campo da medicina, a analise avancada e o machine learning,
em particular o deep learning, t€m se mostrado poderosos para tarefas de visdo compu-
tacional, como a detec¢ao de pneumonia a partir de raios-X, alcan¢ando ou superando o
nivel de radiologistas experientes [Rajpurkar et al. 2017].

2.3. Arquitetura Deep Lake

Deep Lake [Hambardzumyan et al. 2022] é apresentado como um lakehouse especiali-
zado para deep learning, que preserva os beneficios dos data lakes tradicionais, porém
apresenta uma diferenca: armazena dados complexos (imagens, videos, dados tabulares)
na forma de tensores. Essa abordagem permite o streaming rdpido de dados pela rede
diretamente para frameworks de deep learning (PyTorch, TensorFlow, JAX) ou para um
motor de visualiza¢ao no navegador, sem sacrificar a utilizagdo da GPU. O formato de ar-
mazenamento de tensor do Deep Lake (TSF) € otimizado para lidar com arrays de forma
dindmica e acessar dados para treinamento de deep learning. Também inclui ferramen-
tas especificas para deep learning que nio sdo nativas em data lakes tradicionais, como
Tensor Query Language (TQL) que suporta operagdes multidimensionais em tensores.

2.4. Deep Metric Learning

As arquiteturas de Deep Learning, como as Redes Neurais Convolucionais (CNNs), sdo
eficazes para aprender automaticamente representacdes ricas e hierdrquicas a partir de
dados brutos, como imagens, eliminando a necessidade da engenharia manual de carac-
teristicas [LeCun et al. 2015] e [Krizhevsky et al. 2012]. Em paralelo, a area de Metric
Learning busca aprender uma func¢do de distancia otimizada diretamente dos dados, com
o objetivo de aprimorar o desempenho de classificadores baseados em distancia, como o
k-Nearest Neighbor [Mensink et al. 2012].

A sinergia dessas duas areas, conhecida como Deep Metric Learning (DML),
utiliza o Deep Learning para extrair caracteristicas ¢ o Metric Learning para definir
uma métrica de distancia eficaz sobre essas representacdes. Essa abordagem é cru-
cial para lidar com a complexidade de imagens médicas em cendrios de Big Data
[Hambardzumyan et al. 2022].



A funcdo de perda Triplet Loss [Schroff et al. 2015], otimiza o espaco de carac-
teristicas operando sobre trios de amostras, compostos por uma ancora, uma amostra
positiva (da mesma classe) e uma negativa (de uma classe distinta). O objetivo do treina-
mento € ajustar as representacoes para que a distancia entre a ancora e o par positivo nao
seja apenas menor que a distdncia para o par negativo, mas que a exceda por uma margem
de separacao predefinida. Ao forcar essa condi¢dao em todo o conjunto de dados, 0 modelo
aprende a gerar embeddings altamente discriminativos, que agrupam semanticamente as
classes e maximizam a distancia entre elas.

3. Metodologia

3.1. SH Dataset 12K

Foram utilizadas 12.051 imagens microscépicas primdrias e suas respectivas mascaras,
ambas no formato PNG, conforme disponibilizadas pelo SH Dataset. As imagens, oriun-
das dos subconjuntos de treinamento e teste do conjunto original, foram tratadas como
uma unica colecdo de pares imagem-mascara para os propositos deste estudo. O sub-
conjunto denominado diagnosis_test_dataset, descrito em [Oyibo et al. 2023], foi descon-
siderado nos experimentos apresentados. Antes da ingestdo na arquitetura Deep Lake,
o volume total dos dados era de aproximadamente 26,2 GB. Os arquivos de anotagdo
no formato JSON, incluidos na descri¢do original do dataset, ndo foram utilizados nas
avaliagdes de desempenho relacionadas ao armazenamento ou a velocidade de leitura.

3.2. Hardware Utilizado

Os experimentos foram realizados em uma estag¢ao de trabalho configurada para otimizar
as operagOes de entrada, saida e processamento de dados. O sistema contava com um
processador AMD Ryzen 5 9600X, utilizado na execug¢do dos scripts de benchmark e nas
tarefas de manipulacio dos dados. Para o carregamento e tratamento dos datasets, foram
empregados 32 GB de memoria RAM DDRS, operando a 6000 MHz, o que proporcionou
alocacdo e acesso eficientes aos dados em memoria, mesmo considerando os efeitos de
cache do sistema operacional. As operacdes de leitura, tanto do dataset original em for-
mato PNG quanto da estrutura Deep Lake, foram realizadas em uma unidade SSD NVMe
de 1 TB, com velocidade de leitura sequencial de aproximadamente 6000 MB/s, a fim de
minimizar possiveis gargalos relacionados a entrada e saida de dados.

3.3. Configuracio do Ambiente

Todos os experimentos deste estudo foram conduzidos em um ambiente de software con-
figurado sobre o sistema operacional Windows 11, por meio do Subsistema Windows para
Linux (WSL), utilizando a distribui¢do Ubuntu 24.04.2 LTS. Todos o0s scripts € processos
foram executados em um ambiente virtual Python, com a versdo 3.11.12 da linguagem.

As principais bibliotecas Python empregadas neste estudo incluiram: Activeloop
Deep Lake (versao 4.2.7), utilizada para a criacdo e manipulacdo do dataset otimizado;
NumPy (versdo 2.1.3), para operagdes numéricas; Pillow (versdao 11.2.1), para carrega-
mento das imagens em formato PNG; o framework PyTorch (versdo 2.7.1) juntamente
com as bibliotecas torchvision (versdo 0.22.1) e pytorch-metric-learning (versao 2.8.1)
para o treinamento do modelo de deep learning; a biblioteca Scikit-learn (versao 1.7.0)
para as tarefas de avaliacdo; e Matplotlib (versdo 3.10.3), para a geracdo dos graficos
comparativos. O desenvolvimento e a execu¢do dos experimentos ocorreram predomi-
nantemente no ambiente interativo Jupyter Notebook.



3.4. Implementacao da Arquitetura DeepLake

Para a avaliacdo comparativa, as 12.051 imagens microscopicas primarias € suas respec-
tivas mascaras de segmentacdo, provenientes do SH Dataset, foram adicionadas em um
novo dataset Deep Lake. O esquema do dataset foi definido para conter as seguintes co-
lunas: id (inteiro de 32 bits), image (tipo imagem com compressao PNG), mask (tipo
imagem com compressdo PNG), split (texto indicando a particdo ’train’ ou ’test’) e origi-
nal_filename (texto), sendo a estrutura inicial finalizada com um commit de consolidagao.

A ingestdo dos dados foi automatizada por meio de um script Python, que per-
correu recursivamente as subpastas train e test do SH Dataset original. Para cada par
imagem-mascara, o script realizou o carregamento utilizando a biblioteca Pillow, seguido
da conversao para arrays NumPy, com padronizaciao das imagens primdrias para o espago
de cores RGB. Esses dados, juntamente com seus metadados associados (id, nome do
arquivo original e particdo correspondente).

3.5. Obtencao de Métricas e Benchmarking

A avaliagdo de desempenho comparou o acesso a imagens armazenadas como arquivos
no formato PNG com a arquitetura Deep Lake em duas etapas: otimizacao de armaze-
namento e velocidade de iteracdo. Para a andlise de espaco, comparou-se o tamanho
total em disco das imagens e mascaras codificadas em PNG com o diretério do dataset
Deep Lake. Para a velocidade, foi realizado um benchmark de iteracdo completa sobre
as 12.051 amostras, carregando-as sequencialmente com a biblioteca Pillow no caso das
imagens em PNG, ou por acesso direto aos tensores no caso do Deep Lake.

Para o benchmark de velocidade, foram realizadas cinco iteragdes consecutivas
para cada abordagem, com o cache de arquivos do sistema operacional sendo limpo antes
de cada bloco de testes. A anélise dos tempos distinguiu o desempenho de partida fria”(a
primeira iteracdo, medindo o acesso a disco) da “partida quente”(a média e o desvio
padrdo das quatro iteragdes seguintes, refletindo o acesso a dados em cache).

3.6. Extracao de Caracteristicas com Deep Metric Learning e k-NN

Para avaliar e comparar qualitativamente os modelos resultantes de cada pipeline de da-
dos (PNG local e Deep Lake), foi conduzido um estudo de caso utilizando a abordagem
de Deep Metric Learning (DML). O objetivo desta etapa ndo era a classificagdo direta,
mas treinar um modelo para gerar um espago de caracteristicas onde amostras da mesma
classe estivessem proximas e amostras de classes diferentes, distantes. O fluxograma de
treinamento esta ilustrado na Figura 1.

Utilizou-se um modelo ResNet-18 pré-treinado, modificado para gerar embed-
dings de 64 dimensdes. O treinamento foi conduzido sob o paradigma de Deep Metric
Learning (DML), empregando a funcao de perda TripletMarginLoss (margem de 0.2) com
mineracdo de triplets “semi-hard”. O modelo foi otimizado com o algoritmo Adam por
50 épocas (taxa de aprendizado de 0.0001, batch size de 32).

A avaliacdo da qualidade dos embeddings foi realizada de forma indireta: um
classificador k-Nearest Neighbors (k=5) foi treinado nos embeddings de treino e sua per-
formance (Acuricia, F1, AUC) foi medida no conjunto de teste. Adicionalmente, o algo-
ritmo t-SNE (perplexidade de 30) foi usado para visualizar a separacdo das classes em um
espaco 2D. O fluxograma das métricas de avaliacdo esta ilustrado na Figura 2.
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Figura 1. Arquitetura do ciclo de treinamento para o modelo de Deep Metric
Learning (DML). Triplet Loss, calculada a partir dos embeddings de cada
lote, é usada para otimizar os pesos do modelo via backpropagation.
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Figura 2. Fluxograma do processo de avaliacao do modelo.

4. Resultados e Discussoes

4.1. Armazenamento

A primeira métrica de desempenho analisada foi a otimizacdo do espaco de armazena-
mento. A Figura 3 apresenta a comparag¢do do tamanho total ocupado em disco pelos
dados brutos e pelo dataset consolidado na arquitetura Deep Lake. O conjunto de dados
original, composto por 24.102 arquivos no formato PNG, totalizou 26.870,88 MB. Em
contrapartida, o dataset Deep Lake correspondente ocupou 42.789,47 MB, representando
um aumento de aproximadamente 59,2% no espago de armazenamento.

Este aumento € atribuido primariamente a sobrecarga estrutural e de metadados
inerente ao formato Deep Lake. Diferente de um simples diretério de arquivos, a arqui-
tetura gerencia os dados em “chunks” e armazena um extenso conjunto de informagdes
adicionais para viabilizar suas funcionalidades, como o versionamento de dados, esque-
mas de tensores e indices para acesso otimizado. Como as imagens de origem ja estavam
em um formato comprimido (PNG), o potencial de otimiza¢do por uma nova compressao
foi limitado, fazendo com que a sobrecarga da estrutura de gerenciamento se tornasse o
fator dominante no tamanho final. Evidencia-se, portanto, um trade-off fundamental, no
qual as capacidades avancadas de gerenciamento de dados do Deep Lake sdo obtidas ao
custo de um maior consumo de espago em disco.

4.2. Velocidade de Consulta

A segunda métrica de desempenho avaliada foi a velocidade de iteracdo sobre todo o
conjunto de dados. A Figura 4 compara os tempos de execucdo, em milissegundos,
para uma leitura completa dos 12.051 pares imagem-madscara, distinguindo entre ”partida
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fria”(primeira leitura, sem cache) e uma partida quente”(média de leituras subsequentes,
com cache).
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Figura 4. Velocidade de Consulta. Imagens locais no formato PNG (esquerda) e
Deep Lake (direita).



Nos testes de partida fria, o Deep Lake demonstrou ser mais rdpido, completando a
tarefa em 457.696 ms, enquanto o acesso as imagens armazenadas localmente no formato
PNG levou 506.644 ms. A vantagem de desempenho do Deep Lake foi mais evidente
nas partidas quentes, com um tempo médio de 455.272 ms contra 505.597 ms do pipeline
baseado em imagens locais. No entanto, a diferenca na estabilidade do desempenho,
visualizada pelas barras de desvio padrdo, demonstra que o pipeline com imagens locais
exibiu uma alta variabilidade, com um desvio padrao de 8.170 ms, enquanto o Deep Lake
se mostrou extremamente consistente, com um desvio padrao de apenas 1.027 ms.

A superioridade no desempenho pode ser atribuida a forma como os dados sdo ar-
mazenados e acessados. Em vez de realizar milhares de operacdes de 1/O (entrada/saida)
para abrir e ler 24.102 imagens codificadas em PNG individualmente, o Deep Lake acessa
os dados em chunks otimizados e continuos dentro de uma estrutura de arquivos consoli-
dada. Isso minimiza a laténcia e resulta em um carregamento rdpido e previsivel, expli-
cando tanto a menor média de tempo quanto o desvio padrao inferior.

4.3. Estudo de Caso: Deep Lake e Deep Metric Learning

A avaliacdo quantitativa iniciou-se com uma anélise direta da estrutura do espaco de ca-
racteristicas aprendido pelo Deep Metric Learning, conforme detalhado na Tabela 1. Fo-
ram calculadas as estatisticas das distancias Euclidianas entre as amostras de teste para
validar se o modelo cumpriu seu objetivo: agrupar amostras da mesma classe e separar as
de classes distintas. O modelo treinado com imagens armazenadas localmente apresentou
um espago com maior separabilidade entre as classes.

Pipeline Tipo de Distancia | Média | Desvio Padrao
Deep Lake Intra-classe 13.3013 11.5755
p Inter-classe 19.8972 16.0819
Intra-classe 14.9275 17.6376
PNG Local Inter-classe 37.4492 34.6348

Tabela 1. Média e desvio padrao das distancias intra-classes e inter-classe.

O modelo treinado com o pipeline utilizando Deep Lake foi capaz de aprender um
espaco de caracteristicas eficaz para a tarefa. A qualidade dos embeddings foi validada
indiretamente pela performance de um classificador k-NN, que alcangou uma Acurécia de
0.8335, um F1-Score de 0.5460 e um AUC de 0.7716. Esses resultados sdo similares aos
obtidos com o pipeline de referéncia baseado em imagens no formato PNG armazenadas
localmente, que atingiu uma acurécia de 0.8475, F1-Score de 0.5638 ¢ AUC de 0.7725.

A andlise visual do espaco de embeddings na Figura 5 reforca essa observagao.
O gréfico t-SNE para o modelo treinado com Deep Lake (direita) exibe uma tendéncia
de separacdo entre as classes “Positiva”e “Negativa”, com uma estrutura qualitativa quase
idéntica a do modelo de referéncia (esquerda).

A andlise conjunta dos resultados demonstra que, embora a arquitetura Deep Lake
seja vidvel, o pipeline tradicional baseado em imagens armazenadas localmente no for-
mato PNG se mostrou marginalmente superior para esta carga de trabalho especifica. A
maior separabilidade das classes observada na andlise de distancias (Tabela 1) oferece
uma explicacdo quantitativa para a pequena vantagem do pipeline com imagens locais
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Figura 5. PNGs locais (esquerda) e Deep Lake (direita).

nas métricas do k-NN. Isso sugere que a maneira como os dados sd@o processados e en-
tregues ao modelo por cada pipeline pode ter consequéncias sutis no resultado final do
treinamento.

5. Conclusao

Os resultados dos benchmarks de desempenho demonstraram que, enquanto a estrutura
Deep Lake apresentou uma vantagem significativa em velocidade e estabilidade para tare-
fas de iteracdo pura sobre os dados, ela o fez ao custo de um aumento de quase 59,2% no
espaco de armazenamento em disco, devido a sua sobrecarga estrutural e de metadados.
Por outro lado, o estudo de caso com Deep Metric Learning revelou um resultado mais
complexo: embora a qualidade final dos modelos seja qualitativamente compardvel, uma
andlise mais aprofundada da estrutura do espaco de caracteristicas demonstrou uma su-
perioridade marginal, porém mensuréavel, do pipeline baseado em imagens armazenadas
localmente no formato PNG. Este alcancou uma separabilidade entre classes quantita-
tivamente maior, o que explica seu desempenho ligeiramente superior nas métricas de
classificagdo.

A principal implica¢do deste trabalho é que a decisao sobre a arquitetura de dados
deve ser guiada pelas prioridades especificas de cada projeto. Se a velocidade de leitura
pura, o versionamento e a facilidade de gerenciamento de dados em larga escala sdo cruci-
ais, o Deep Lake se apresenta como uma solu¢@o robusta, cujo custo em armazenamento
pode ser justificivel. Para projetos de escopo menor, a simplicidade e a eficiéncia de ar-
mazenamento das imagens codificadas em PNG permanecem uma alternativa nao apenas
vidvel, mas competitiva, como demonstrado pelos resultados de qualidade do modelo.

A adocgdo de formatos de dados modernos como o Deep Lake pode ser feita com a
confianca de que as funcionalidades avancadas que sdo oferecidas preservam em grande
parte a capacidade do modelo de aprender as caracteristicas semanticas da tarefa, embora
este estudo sugira que diferencas sutis na otimizagdo final do espaco de caracteristicas
possam surgir. Como trabalhos futuros, sugere-se a replicacdo destes experimentos em
ambientes de nuvem e com datasets de ordens de magnitude ainda maiores, onde os be-
neficios de uma arquitetura Deep Lake podem se tornar ainda mais pronunciados.
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