
Uma arquitetura de Data Lake baseado em Deep Learning
para busca de imagens parasitárias de doenças socialmente

determinadas.

João Gabriel Marques de Lima1, Danilo Fernandes1
Fabiane da Silva Queiroz1, André L. L. Aquino1

1 Laboratório Orion – Universidade Federal de Alagoas (UFAL)
Av. Lourival Melo Mota, S/N - Tabuleiro do Martins, Maceió - AL, 57072-970, Brazil

{joao.gabriel,dfc,fabiane.queiroz,alla}@orion.ufal.br

Abstract. This work compares data pipelines using image files in PNG format
and Deep Lake for medical images (SHdataset) through performance bench-
marks and a Deep Metric Learning (DML) case study to analyze performance
and effectiveness trade-offs. Results indicate that Deep Lake, while faster in
data iteration, required 59.2% more storage; although it produced a model of
comparable quality, the image file-based approach yielded a feature space with
marginally superior quantitative separability. We conclude that modern formats
present a trade-off between management benefits and storage/optimization costs
while largely preserving model effectiveness.

Resumo. Este trabalho compara pipelines de dados utilizando arquivos de ima-
gem no formato PNG e o Deep Lake para imagens médicas (SHdataset) através
de benchmarks de desempenho e de um estudo de caso com Deep Metric Le-
arning (DML) para analisar os trade-offs de eficácia e performance. O Deep
Lake, embora mais rápido na iteração de dados, exigiu 59,2% mais armazena-
mento; apesar de produzir um modelo de qualidade comparável, a abordagem
com arquivos de imagem gerou um espaço de caracterı́sticas com separabili-
dade quantitativa marginalmente superior. Conclui-se que formatos modernos
apresentam um trade-off entre benefı́cios de gerenciamento e custos de armaze-
namento e otimização, mas preservam em grande parte a eficácia do modelo.

1. Introdução

Doenças socialmente determinadas são assim denominadas porque sua ocorrência,
distribuição e gravidade estão profundamente vinculadas a fatores socioeconômicos,
como acesso a saneamento básico, educação, renda e condições de moradia. O avanço do
deep learning tem se mostrado um poderoso aliado no enfrentamento dessas enfermida-
des, transformando a análise de imagens médicas e permitindo avanços significativos no
diagnóstico e na pesquisa [Litjens et al. 2017].

A aplicação dessas técnicas em cenários de larga escala gera um volume massivo
de dados (Big Data), cuja gestão eficiente se torna um desafio central [Hu et al. 2014]. A
forma como esses datasets são estruturados, armazenados e acessados não é apenas um
detalhe técnico, mas um pilar fundamental, influenciando a reprodutibilidade dos resulta-
dos.



Tradicionalmente, os pipelines de dados para visão computacional são construı́dos
sobre uma premissa simples: um diretório contendo milhares ou milhões de arquivos de
imagem individuais (ex: PNG, JPEG). Esta abordagem, embora direta, impõe gargalos
operacionais. A sobrecarga de I/O (entrada/saı́da) para ler um grande número de arquivos
pequenos retarda o treinamento, enquanto o versionamento do dataset torna-se uma tarefa
manual, complexa e propensa a erros [Amershi et al. 2019]. Essas limitações evidenciam
a necessidade de arquiteturas de dados mais sofisticadas.

Em resposta, surgiram arquiteturas como o Data Lakehouse
[Armbrust et al. 2021], com implementações especializadas para IA como o Deep
Lake [Hambardzumyan et al. 2022], que prometem um ecossistema de gerenciamento de
dados mais robusto. Elas propõem uma mudança de paradigma: em vez de uma coleção
de arquivos, o dataset é tratado como um artefato de dados único e transacional, otimizado
para streaming rápido e com versionamento integrado. Essa abordagem promete não
apenas ganhos de desempenho, mas também um ecossistema de gerenciamento de dados
mais robusto e auditável. Contudo, a adoção de novas tecnologias exige uma análise
prática de seus trade-offs, que vão além dos benchmarks de I/O e devem incluir o impacto
na otimização do modelo.

Este trabalho realiza uma análise comparativa e prática entre um pipeline de da-
dos tradicional, baseado em imagens armazenadas em disco, e um pipeline moderno uti-
lizando a arquitetura Deep Lake. A comparação é conduzida sob duas óticas principais,
utilizando o SHdataset [Oyibo et al. 2023] de imagens microscópicas: (1) benchmarks de
desempenho, focados em espaço de armazenamento e velocidade de iteração; e (2) um
estudo de caso aprofundado com Deep Metric Learning (DML), utilizando a abordagem
de Triplet Loss [Schroff et al. 2015], que avalia e compara as caracterı́sticas quantitativas
e qualitativas dos modelos resultantes de cada pipeline.

2. Referencial Teórico

2.1. Base de Dados Utilizada

Este estudo utiliza a base de dados pública SHdataset [Oyibo et al. 2023], que contém
12.051 imagens microscópicas de ovos de Schistosoma Haematobium, doença parasitária
de alto impacto em regiões com recursos limitados. As amostras foram coletadas como
parte de um estudo de campo em Abuja, Nigéria. O estudo envolveu a amostra de urina
de crianças em idade escolar que apresentavam hematúria.

O processamento de amostras seguiu o procedimento padrão, onde 10 mL de urina
foram passados por uma membrana de filtro de 13mm de diâmetro com poros de 0,2 µm.
Então, a membrana foi montada em lâmina de microscopia para aquisição de imagens,
onde se foi utilizado o microscópio digital ”Schistoscope”.

2.2. Gerenciamento de Grandes Volumes de Imagens Médicas

Segundo [Yousef Ameen Esmail Ahmed et al. 2023] e [Deheyab et al. 2022], o proces-
samento de imagens médicas tornou-se uma área fundamental na computação con-
temporânea, oferecendo suporte ao diagnóstico médico por meio de ferramentas para
detecção automática. No entanto, os avanços tecnológicos em dispositivos de aquisição
de imagens resultaram em um crescimento na quantidade de dados gerados. Este volume



crescente de dados, juntamente com a necessidade de análises em tempo real, é uma ca-
racterı́stica do big data. As imagens médicas se encaixam nesse paradigma, contribuindo
para o aumento de dados de domı́nios distintos.

Além do volume, o big data apresenta caracterı́sticas como a variedade (dados es-
truturados, semiestruturados e não estruturados) e a velocidade de geração. Em domı́nios
como imagens médicas, os dados frequentemente incluem formatos complexos e não ta-
bulares, como imagens e vı́deos, que não se encaixam bem em estruturas relacionais
tradicionais [Armbrust et al. 2021]. Os sistemas tradicionais de gerenciamento de da-
dos, baseados principalmente em sistemas de gerenciamento de banco de dados relacio-
nais (RDBMS), são inadequados para lidar com o volume e a variedade inerentes ao big
data, oferecendo pouco suporte para dados não estruturados ou semiestruturados e não
escalando de forma adequada com hardware comum para lidar com o volume crescente
[Hu et al. 2014].

Como consequência, novas metodologias e arquiteturas de dados são necessárias
para lidar com Big Data. No campo da medicina, a análise avançada e o machine learning,
em particular o deep learning, têm se mostrado poderosos para tarefas de visão compu-
tacional, como a detecção de pneumonia a partir de raios-X, alcançando ou superando o
nı́vel de radiologistas experientes [Rajpurkar et al. 2017].

2.3. Arquitetura Deep Lake

Deep Lake [Hambardzumyan et al. 2022] é apresentado como um lakehouse especiali-
zado para deep learning, que preserva os benefı́cios dos data lakes tradicionais, porém
apresenta uma diferença: armazena dados complexos (imagens, vı́deos, dados tabulares)
na forma de tensores. Essa abordagem permite o streaming rápido de dados pela rede
diretamente para frameworks de deep learning (PyTorch, TensorFlow, JAX) ou para um
motor de visualização no navegador, sem sacrificar a utilização da GPU. O formato de ar-
mazenamento de tensor do Deep Lake (TSF) é otimizado para lidar com arrays de forma
dinâmica e acessar dados para treinamento de deep learning. Também inclui ferramen-
tas especı́ficas para deep learning que não são nativas em data lakes tradicionais, como
Tensor Query Language (TQL) que suporta operações multidimensionais em tensores.

2.4. Deep Metric Learning

As arquiteturas de Deep Learning, como as Redes Neurais Convolucionais (CNNs), são
eficazes para aprender automaticamente representações ricas e hierárquicas a partir de
dados brutos, como imagens, eliminando a necessidade da engenharia manual de carac-
terı́sticas [LeCun et al. 2015] e [Krizhevsky et al. 2012]. Em paralelo, a área de Metric
Learning busca aprender uma função de distância otimizada diretamente dos dados, com
o objetivo de aprimorar o desempenho de classificadores baseados em distância, como o
k-Nearest Neighbor [Mensink et al. 2012].

A sinergia dessas duas áreas, conhecida como Deep Metric Learning (DML),
utiliza o Deep Learning para extrair caracterı́sticas e o Metric Learning para definir
uma métrica de distância eficaz sobre essas representações. Essa abordagem é cru-
cial para lidar com a complexidade de imagens médicas em cenários de Big Data
[Hambardzumyan et al. 2022].



A função de perda Triplet Loss [Schroff et al. 2015], otimiza o espaço de carac-
terı́sticas operando sobre trios de amostras, compostos por uma âncora, uma amostra
positiva (da mesma classe) e uma negativa (de uma classe distinta). O objetivo do treina-
mento é ajustar as representações para que a distância entre a âncora e o par positivo não
seja apenas menor que a distância para o par negativo, mas que a exceda por uma margem
de separação predefinida. Ao forçar essa condição em todo o conjunto de dados, o modelo
aprende a gerar embeddings altamente discriminativos, que agrupam semanticamente as
classes e maximizam a distância entre elas.

3. Metodologia
3.1. SH Dataset 12K
Foram utilizadas 12.051 imagens microscópicas primárias e suas respectivas máscaras,
ambas no formato PNG, conforme disponibilizadas pelo SH Dataset. As imagens, oriun-
das dos subconjuntos de treinamento e teste do conjunto original, foram tratadas como
uma única coleção de pares imagem-máscara para os propósitos deste estudo. O sub-
conjunto denominado diagnosis test dataset, descrito em [Oyibo et al. 2023], foi descon-
siderado nos experimentos apresentados. Antes da ingestão na arquitetura Deep Lake,
o volume total dos dados era de aproximadamente 26,2 GB. Os arquivos de anotação
no formato JSON, incluı́dos na descrição original do dataset, não foram utilizados nas
avaliações de desempenho relacionadas ao armazenamento ou à velocidade de leitura.

3.2. Hardware Utilizado
Os experimentos foram realizados em uma estação de trabalho configurada para otimizar
as operações de entrada, saı́da e processamento de dados. O sistema contava com um
processador AMD Ryzen 5 9600X, utilizado na execução dos scripts de benchmark e nas
tarefas de manipulação dos dados. Para o carregamento e tratamento dos datasets, foram
empregados 32 GB de memória RAM DDR5, operando a 6000 MHz, o que proporcionou
alocação e acesso eficientes aos dados em memória, mesmo considerando os efeitos de
cache do sistema operacional. As operações de leitura, tanto do dataset original em for-
mato PNG quanto da estrutura Deep Lake, foram realizadas em uma unidade SSD NVMe
de 1 TB, com velocidade de leitura sequencial de aproximadamente 6000 MB/s, a fim de
minimizar possı́veis gargalos relacionados à entrada e saı́da de dados.

3.3. Configuração do Ambiente
Todos os experimentos deste estudo foram conduzidos em um ambiente de software con-
figurado sobre o sistema operacional Windows 11, por meio do Subsistema Windows para
Linux (WSL), utilizando a distribuição Ubuntu 24.04.2 LTS. Todos os scripts e processos
foram executados em um ambiente virtual Python, com a versão 3.11.12 da linguagem.

As principais bibliotecas Python empregadas neste estudo incluı́ram: Activeloop
Deep Lake (versão 4.2.7), utilizada para a criação e manipulação do dataset otimizado;
NumPy (versão 2.1.3), para operações numéricas; Pillow (versão 11.2.1), para carrega-
mento das imagens em formato PNG; o framework PyTorch (versão 2.7.1) juntamente
com as bibliotecas torchvision (versão 0.22.1) e pytorch-metric-learning (versão 2.8.1)
para o treinamento do modelo de deep learning; a biblioteca Scikit-learn (versão 1.7.0)
para as tarefas de avaliação; e Matplotlib (versão 3.10.3), para a geração dos gráficos
comparativos. O desenvolvimento e a execução dos experimentos ocorreram predomi-
nantemente no ambiente interativo Jupyter Notebook.



3.4. Implementação da Arquitetura DeepLake
Para a avaliação comparativa, as 12.051 imagens microscópicas primárias e suas respec-
tivas máscaras de segmentação, provenientes do SH Dataset, foram adicionadas em um
novo dataset Deep Lake. O esquema do dataset foi definido para conter as seguintes co-
lunas: id (inteiro de 32 bits), image (tipo imagem com compressão PNG), mask (tipo
imagem com compressão PNG), split (texto indicando a partição ’train’ ou ’test’) e origi-
nal filename (texto), sendo a estrutura inicial finalizada com um commit de consolidação.

A ingestão dos dados foi automatizada por meio de um script Python, que per-
correu recursivamente as subpastas train e test do SH Dataset original. Para cada par
imagem-máscara, o script realizou o carregamento utilizando a biblioteca Pillow, seguido
da conversão para arrays NumPy, com padronização das imagens primárias para o espaço
de cores RGB. Esses dados, juntamente com seus metadados associados (id, nome do
arquivo original e partição correspondente).

3.5. Obtenção de Métricas e Benchmarking
A avaliação de desempenho comparou o acesso a imagens armazenadas como arquivos
no formato PNG com a arquitetura Deep Lake em duas etapas: otimização de armaze-
namento e velocidade de iteração. Para a análise de espaço, comparou-se o tamanho
total em disco das imagens e máscaras codificadas em PNG com o diretório do dataset
Deep Lake. Para a velocidade, foi realizado um benchmark de iteração completa sobre
as 12.051 amostras, carregando-as sequencialmente com a biblioteca Pillow no caso das
imagens em PNG, ou por acesso direto aos tensores no caso do Deep Lake.

Para o benchmark de velocidade, foram realizadas cinco iterações consecutivas
para cada abordagem, com o cache de arquivos do sistema operacional sendo limpo antes
de cada bloco de testes. A análise dos tempos distinguiu o desempenho de ”partida fria”(a
primeira iteração, medindo o acesso a disco) da ”partida quente”(a média e o desvio
padrão das quatro iterações seguintes, refletindo o acesso a dados em cache).

3.6. Extração de Caracterı́sticas com Deep Metric Learning e k-NN
Para avaliar e comparar qualitativamente os modelos resultantes de cada pipeline de da-
dos (PNG local e Deep Lake), foi conduzido um estudo de caso utilizando a abordagem
de Deep Metric Learning (DML). O objetivo desta etapa não era a classificação direta,
mas treinar um modelo para gerar um espaço de caracterı́sticas onde amostras da mesma
classe estivessem próximas e amostras de classes diferentes, distantes. O fluxograma de
treinamento está ilustrado na Figura 1.

Utilizou-se um modelo ResNet-18 pré-treinado, modificado para gerar embed-
dings de 64 dimensões. O treinamento foi conduzido sob o paradigma de Deep Metric
Learning (DML), empregando a função de perda TripletMarginLoss (margem de 0.2) com
mineração de triplets ”semi-hard”. O modelo foi otimizado com o algoritmo Adam por
50 épocas (taxa de aprendizado de 0.0001, batch size de 32).

A avaliação da qualidade dos embeddings foi realizada de forma indireta: um
classificador k-Nearest Neighbors (k=5) foi treinado nos embeddings de treino e sua per-
formance (Acurácia, F1, AUC) foi medida no conjunto de teste. Adicionalmente, o algo-
ritmo t-SNE (perplexidade de 30) foi usado para visualizar a separação das classes em um
espaço 2D. O fluxograma das métricas de avaliação está ilustrado na Figura 2.



Distâncias
(TripletMarginLoss)

Base de Dados
PNG / Deep Lake

Data Loader
PyTorch

Modelo DML
ResNet-18Embeddings

Figura 1. Arquitetura do ciclo de treinamento para o modelo de Deep Metric
Learning (DML). Triplet Loss, calculada a partir dos embeddings de cada
lote, é usada para otimizar os pesos do modelo via backpropagation.

Visualização
t-SNE

Classificador
k-NN

Acurácia
F1-Score

AUC

Gráfico 2D

Embeddings

Figura 2. Fluxograma do processo de avaliação do modelo.

4. Resultados e Discussões

4.1. Armazenamento
A primeira métrica de desempenho analisada foi a otimização do espaço de armazena-
mento. A Figura 3 apresenta a comparação do tamanho total ocupado em disco pelos
dados brutos e pelo dataset consolidado na arquitetura Deep Lake. O conjunto de dados
original, composto por 24.102 arquivos no formato PNG, totalizou 26.870,88 MB. Em
contrapartida, o dataset Deep Lake correspondente ocupou 42.789,47 MB, representando
um aumento de aproximadamente 59,2% no espaço de armazenamento.

Este aumento é atribuı́do primariamente à sobrecarga estrutural e de metadados
inerente ao formato Deep Lake. Diferente de um simples diretório de arquivos, a arqui-
tetura gerencia os dados em “chunks” e armazena um extenso conjunto de informações
adicionais para viabilizar suas funcionalidades, como o versionamento de dados, esque-
mas de tensores e ı́ndices para acesso otimizado. Como as imagens de origem já estavam
em um formato comprimido (PNG), o potencial de otimização por uma nova compressão
foi limitado, fazendo com que a sobrecarga da estrutura de gerenciamento se tornasse o
fator dominante no tamanho final. Evidencia-se, portanto, um trade-off fundamental, no
qual as capacidades avançadas de gerenciamento de dados do Deep Lake são obtidas ao
custo de um maior consumo de espaço em disco.

4.2. Velocidade de Consulta
A segunda métrica de desempenho avaliada foi a velocidade de iteração sobre todo o
conjunto de dados. A Figura 4 compara os tempos de execução, em milissegundos,
para uma leitura completa dos 12.051 pares imagem-máscara, distinguindo entre ”partida



Figura 3. Comparação do espaço de armazenamento em disco.

fria”(primeira leitura, sem cache) e uma ”partida quente”(média de leituras subsequentes,
com cache).

Figura 4. Velocidade de Consulta. Imagens locais no formato PNG (esquerda) e
Deep Lake (direita).



Nos testes de partida fria, o Deep Lake demonstrou ser mais rápido, completando a
tarefa em 457.696 ms, enquanto o acesso às imagens armazenadas localmente no formato
PNG levou 506.644 ms. A vantagem de desempenho do Deep Lake foi mais evidente
nas partidas quentes, com um tempo médio de 455.272 ms contra 505.597 ms do pipeline
baseado em imagens locais. No entanto, a diferença na estabilidade do desempenho,
visualizada pelas barras de desvio padrão, demonstra que o pipeline com imagens locais
exibiu uma alta variabilidade, com um desvio padrão de 8.170 ms, enquanto o Deep Lake
se mostrou extremamente consistente, com um desvio padrão de apenas 1.027 ms.

A superioridade no desempenho pode ser atribuı́da à forma como os dados são ar-
mazenados e acessados. Em vez de realizar milhares de operações de I/O (entrada/saı́da)
para abrir e ler 24.102 imagens codificadas em PNG individualmente, o Deep Lake acessa
os dados em chunks otimizados e contı́nuos dentro de uma estrutura de arquivos consoli-
dada. Isso minimiza a latência e resulta em um carregamento rápido e previsı́vel, expli-
cando tanto a menor média de tempo quanto o desvio padrão inferior.

4.3. Estudo de Caso: Deep Lake e Deep Metric Learning

A avaliação quantitativa iniciou-se com uma análise direta da estrutura do espaço de ca-
racterı́sticas aprendido pelo Deep Metric Learning, conforme detalhado na Tabela 1. Fo-
ram calculadas as estatı́sticas das distâncias Euclidianas entre as amostras de teste para
validar se o modelo cumpriu seu objetivo: agrupar amostras da mesma classe e separar as
de classes distintas. O modelo treinado com imagens armazenadas localmente apresentou
um espaço com maior separabilidade entre as classes.

Pipeline Tipo de Distância Média Desvio Padrão

Deep Lake Intra-classe 13.3013 11.5755
Inter-classe 19.8972 16.0819

PNG Local Intra-classe 14.9275 17.6376
Inter-classe 37.4492 34.6348

Tabela 1. Média e desvio padrão das distâncias intra-classes e inter-classe.

O modelo treinado com o pipeline utilizando Deep Lake foi capaz de aprender um
espaço de caracterı́sticas eficaz para a tarefa. A qualidade dos embeddings foi validada
indiretamente pela performance de um classificador k-NN, que alcançou uma Acurácia de
0.8335, um F1-Score de 0.5460 e um AUC de 0.7716. Esses resultados são similares aos
obtidos com o pipeline de referência baseado em imagens no formato PNG armazenadas
localmente, que atingiu uma acurácia de 0.8475, F1-Score de 0.5638 e AUC de 0.7725.

A análise visual do espaço de embeddings na Figura 5 reforça essa observação.
O gráfico t-SNE para o modelo treinado com Deep Lake (direita) exibe uma tendência
de separação entre as classes ”Positiva”e ”Negativa”, com uma estrutura qualitativa quase
idêntica à do modelo de referência (esquerda).

A análise conjunta dos resultados demonstra que, embora a arquitetura Deep Lake
seja viável, o pipeline tradicional baseado em imagens armazenadas localmente no for-
mato PNG se mostrou marginalmente superior para esta carga de trabalho especı́fica. A
maior separabilidade das classes observada na análise de distâncias (Tabela 1) oferece
uma explicação quantitativa para a pequena vantagem do pipeline com imagens locais



Figura 5. PNGs locais (esquerda) e Deep Lake (direita).

nas métricas do k-NN. Isso sugere que a maneira como os dados são processados e en-
tregues ao modelo por cada pipeline pode ter consequências sutis no resultado final do
treinamento.

5. Conclusão

Os resultados dos benchmarks de desempenho demonstraram que, enquanto a estrutura
Deep Lake apresentou uma vantagem significativa em velocidade e estabilidade para tare-
fas de iteração pura sobre os dados, ela o fez ao custo de um aumento de quase 59,2% no
espaço de armazenamento em disco, devido à sua sobrecarga estrutural e de metadados.
Por outro lado, o estudo de caso com Deep Metric Learning revelou um resultado mais
complexo: embora a qualidade final dos modelos seja qualitativamente comparável, uma
análise mais aprofundada da estrutura do espaço de caracterı́sticas demonstrou uma su-
perioridade marginal, porém mensurável, do pipeline baseado em imagens armazenadas
localmente no formato PNG. Este alcançou uma separabilidade entre classes quantita-
tivamente maior, o que explica seu desempenho ligeiramente superior nas métricas de
classificação.

A principal implicação deste trabalho é que a decisão sobre a arquitetura de dados
deve ser guiada pelas prioridades especı́ficas de cada projeto. Se a velocidade de leitura
pura, o versionamento e a facilidade de gerenciamento de dados em larga escala são cruci-
ais, o Deep Lake se apresenta como uma solução robusta, cujo custo em armazenamento
pode ser justificável. Para projetos de escopo menor, a simplicidade e a eficiência de ar-
mazenamento das imagens codificadas em PNG permanecem uma alternativa não apenas
viável, mas competitiva, como demonstrado pelos resultados de qualidade do modelo.

A adoção de formatos de dados modernos como o Deep Lake pode ser feita com a
confiança de que as funcionalidades avançadas que são oferecidas preservam em grande
parte a capacidade do modelo de aprender as caracterı́sticas semânticas da tarefa, embora
este estudo sugira que diferenças sutis na otimização final do espaço de caracterı́sticas
possam surgir. Como trabalhos futuros, sugere-se a replicação destes experimentos em
ambientes de nuvem e com datasets de ordens de magnitude ainda maiores, onde os be-
nefı́cios de uma arquitetura Deep Lake podem se tornar ainda mais pronunciados.



Referências
Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., Nagappan, N., Nushi,

B., and Zimmermann, T. (2019). Software engineering for machine learning: A case
study. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), pages 291–300. IEEE.

Armbrust, M., Ghodsi, A., Xin, R., and Zaharia, M. (2021). Lakehouse: a new generation
of open platforms that unify data warehousing and advanced analytics. In Proceedings
of CIDR, volume 8, page 28.

Deheyab, A. O. A., Alwan, M. H., khalid Abdul Rezzaqe, I., Mahmood, O. A., Ham-
madi, Y. I., Kareem, A. N., and Ibrahim, M. (2022). An overview of challenges in
medical image processing. In The 6th International Conference on Future Networks &
Distributed Systems (ICFND ’22), page 6, Tashkent, TAS, Uzbekistan. ACM.

Hambardzumyan, S., Tuli, A., Ghukasyan, L., Rahman, F., Topchyan, H., Isayan, D.,
McQuade, M., Harutyunyan, M., Hakobyan, T., Stranic, I., et al. (2022). Deep lake: A
lakehouse for deep learning.

Hu, H., Wen, Y., Chua, T.-S., and Li, X. (2014). Toward Scalable Systems for Big Data
Analytics: A Technology Tutorial. IEEE Access.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems,
25.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436–
444.

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., Van
Der Laak, J. A., Van Ginneken, B., and Sánchez, C. I. (2017). A survey on deep
learning in medical image analysis. Medical image analysis, 42:60–88.

Mensink, T., Verbeek, J., Perronnin, F., and Csurka, G. (2012). Metric learning for large
scale image classification: Generalizing to new classes at near-zero cost. In European
Conference on Computer Vision, pages 488–501. Springer.

Oyibo, P., Meulah, B., Agbana, T., Bengtson, M., van Lieshout, L., Oyibo, W., Vdovine,
G., and Diehl, J.-C. (2023). Schistosoma Haematobium Egg Image Dataset.

Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A.,
Langlotz, C., Shpanskaya, K., et al. (2017). Chexnet: Radiologist-level pneumonia
detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225.

Schroff, F., Kalenichenko, D., and Philbin, J. (2015). Facenet: A unified embedding for
face recognition and clustering. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 815–823.

Yousef Ameen Esmail Ahmed et al., Biao Yue, Z. G. J. Y. (2023). An overview: Big data
analysis by deep learning and image processing. World Scientific Journals, 21(07).


