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Abstract. This work presents an interface for monitoring anthropomorphic gait,
with estimation and analysis of movement kinematics based on data collected by
sixteen prefabricated piezoresistive sensors arranged in insoles. The instrumen-
ted system also includes six inertial measurement units attached to the articular
segments of the lower limbs, enabling the tracking of joint trajectories. For the
estimation of these trajectories, four non-parametric machine learning compu-
tational models were evaluated: k-NN, ANN, decision tree, and random forest.
The results demonstrate the feasibility of applying pattern classification-based
models to estimate joint angles, with potential applications in driving active
orthosis joints or rehabilitation devices.

Resumo. Neste trabalho, apresenta-se uma interface para o monitoramento
da marcha antropomorfica, com estimacdo e andlise da cinemdtica do movi-
mento a partir de dados coletados por dezesseis sensores piezorresistivos pré-
fabricados, dispostos em palmilhas. O sistema instrumentado também inclui
seis unidades de medida inercial fixadas aos segmentos articulares dos membros
inferiores, permitindo o rastreamento das trajetorias das articulacoes. Para a
estimagdo dessas trajetorias, foram determinados quatro modelos computacio-
nais de aprendizado de mdquinas ndo paramétricas: k-NN, RNA, drvore de de-
cisdo e floresta aleatoria. Os resultados demonstram a viabilidade da aplicagdo
de modelos baseados em classificacdo de padrées, que podem ser utilizados no
acionamento de juntas de orteses ativas ou em dispositivos de reabilitacdo.

1. Introducao

A marcha humana, ou locomocao bipede, ¢ um processo ciclico e complexo que possi-
bilita o deslocamento do corpo, mediado pela interacdo entre os sistemas neuromuscular
e esquelético. Esse movimento € caracterizado pela alternincia entre as fases de apoio e
balanco em cada membro inferior, delimitadas pelos eventos de contato inicial (calcanhar)
e desprendimento (dedos) do pé com o solo (ciclo de passada) [Lin et al. 2016]. Durante o
intervalo de apoio (aproximadamente 62% do ciclo da marcha) [Leal-Junior et al. 2018],
observam-se variacdes na velocidade, impulsos e forcas de reagdo do solo, as quais re-
fletem exigéncias de manobra e efici€éncia energética. A distribuicao da pressdo plantar e
a cinematica da marcha sao diretamente influenciadas pela dinamica articular - posicao,



velocidade e aceleracdo dos segmentos dos membros inferiores. Além disso, alteracdes
nos padrdes de marcha constituem indicadores precoces de comorbidades cronicas, como
acidente vascular cerebral (AVC), deméncia, doen¢a de Parkinson, cancer, cardiopatias e
diabetes [Hao et al. 2020]. Tais alteracdes decorrem de compensagdes neuromusculares
ou degeneragdes estruturais, que modificam a dinamica articular e, consequentemente, 0s
padrdes de pressdo plantar.

O monitoramento e a andlise da marcha possuem aplicacdes multidisciplinares,
abrangendo 4reas como medicina, esportes, geriatria, reabilitacdo e diagndstico. Tradi-
cionalmente, a precisdao dessas andlises depende de medi¢des realizadas em laboratérios
especializados, equipados com sistemas de cameras de alta resolu¢do, sensores corporais,
esteiras instrumentadas e unidades de processamento integradas - recursos que, embora
oferecam alta acuricia, envolvem custos elevados [Antoniou et al. 2023]. No entanto,
essas metodologias apresentam limitagdes criticas: 1. Restri¢des espaciais e temporais,
os dados coletados em ambientes controlados nem sempre refletem a marcha natural do
paciente em seu cotidiano, comprometendo a validade clinica dos diagndsticos. 2. Com-
plexidade operacional, sistemas baseados em multiplas cameras exigem processos de pos-
andlise demorados, enquanto esteiras instrumentadas nao reproduzem contextos reais de
caminhada ou fornecem alertas preventivos para quedas. 3. Barreiras de acesso, o alto
custo e a necessidade de infraestrutura especializada tornam esses métodos invidveis para
idosos com mobilidade reduzida, especialmente em regides com poucos centros de re-
feréncia - como muitas cidades do interior da Bahia. Diante desses desafios, torna-se
urgente o uso de solugdes acessiveis que permitam o monitoramento remoto da marcha,
combinando praticidade, confiabilidade e inclusdo. Tal abordagem seria particularmente
relevante para a populacio idosa, garantindo acompanhamento continuo sem a necessi-
dade de deslocamentos dispendiosos.

O avanco de sensores vestiveis e da Internet das Coisas para a Sadde (Internet of
Health Things - IoHT), tem democratizado a anélise da marcha, possibilitando monitora-
mento em ambientes naturais e confortdveis, superando as limitacdes do ambiente labora-
torial. Estudos recentes ilustram esse progresso, por exemplo, em [Chen et al. 2020] pro-
puseram um sistema de palmilha instrumentada que extrai vinte seis parametros clinicos
da marcha, aplicando o conceito de “marcha baseada em termos de atividades da vida
didria” para maior relevancia clinica. No entanto, em [Nguyen et al. 2018], utilizaram
dados de pressdo plantar e algoritmos k-NN para classificar cinco atividades ambula-
toriais - caminhada em terreno plano, descida de rampa, subida de rampa, descida de
escada e subida de escada. O tempo da passada, comprimento e a velocidade da mar-
cha, validando a aplicacdo em ecossistemas reais, foram propostos usando um modelo
SVM em [Duong et al. 2022]. J4 os pardmetros cinemdticos, cinéticos e trajetorias do
centro de pressdo a partir da distribui¢ao plantar foram estimados em [Zhang et al. 2017],
com o sistema denominado SportSole. Em [Ansah et al. 2023] combinaram palmilhas
instrumentadas com IMUs para deteccdo continua de passos arrastados, auxiliando no
diagnéstico precoce de doenga de Parkinson.

Este trabalho propde uma solucdo de interface para compartilhamento de dados
destinada a estima¢ao da marcha empregando palmilhas pré-fabricadas e instrumentadas.
O sistema foi projetado para ser ndo intrusivo e de facil ado¢ao no cotidiano, permitindo
sua inser¢ao em cal¢ados convencionais como uma palmilha comum. As informacdes



dindmicas durante todas as fases da marcha sdo capturados a tempo real a partir de dezes-
seis sensores piezorresistivos, condicionadas, filtradas, convertidas e pré-processadas por
um microcontrolador STM32H743, para posteriormente serem compartilhados via inter-
face remota para analise em um computador. A cinemadtica da marcha antropomorfica é
estimada utilizando quatro algoritmos de aprendizado de maquina ndo paramétricos: k-
vizinhos mais préximos, (k Nearest Neighbors - k-NN), Rede Neural Artificial (RNA),
arvore de decisao e floresta aleatéria. O desenvolvimento do sistema serd detalhado
nas seguintes secoes: Metodologia, descricio dos materiais, configuragdo experimental
e técnicas de processamento de dados; Resultados e Discussdes, andlise comparativa do
desempenho dos algoritmos e validacao dos modelos, e Conclusado, implicagdes praticas,
limitacdes e direcionamentos futuros.

2. Metodologia

A Figura 1 ilustra a arquitetura do sistema de aquisi¢do desenvolvido para: supervisiao
remota da marcha antropomorfica, treinamento de modelos de aprendizado de méaquina,
regressao e andlise qualitativa dos modelos para estima¢ao da marcha.
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Figura 1. Diagrama em blocos do sistema de hardware implementado.

2.1. Médulo de hardware desenvolvido

Palmilhas modelo FS-INS-16Z! foram instrumentadas para capturar sinais provenientes
de dezesseis pontos de pressdo piezorresistivos, os quais foram condicionados e limi-
tados em banda por filtros antialiasing de primeira ordem, como etapa inicial da mon-
tagem do prototipo. Em seguida, os sinais analdgicos foram digitalizados pelos dezes-
seis Conversores Analégico-Digital (CAD) do microcontrolador STM32H743? para pos-
terior compartilhamento com o sistema embarcado Raspberry PI4. Conforme ilustrado
na Figura 1, também foi implementada a aquisi¢cdo de dados de seis Unidades de Me-
dida Inerciais (Inertial Measurement Units - IMUs), cujos sinais foram compartilhados

'Legact®https://film-sensor.com/product /pressure-mapping-fs-ins-16z
2STMicroeletronics©https: //www. st . com



via barramento I?’C multiplexado. Os microcontroladores foram programadas utilizando
a plataforma STM32CubelDE, desenvolvida pela STMicroelectronics©, fabricante dos
microcontroladores STM. O microcontrolador STM32H743 incorpora uma CPU Arm
Cortex®-M7 de 480MHz com FPU e trés CADs SAR (ADCI1, ADC2 e ADC3, com
até 20 canais analdgicos cada), oferecendo resolugdes de até 16 bits e taxas de amostra-
gem entre 3,6MSps até 7,1MSps. Para este projeto, foram utilizados 16 canais analégicos
dos conversores ADC1 e ADC3, configurados com DMA (Direct Memory Access) de
resolucdes de 14 bits. Para garantir o tempo de conversdo adequado, um temporizador in-
terno (TIM3) foi utilizado para gerenciar a sinalizacao de fim de conversao dos 16 CADs,
com uma taxa de 387,5 ciclos do clock do processador de 240MHz.

Contudo, no contexto desta pesquisa, que se centra na analise da marcha humana,
conforme referido em [Aggarwal et al. 2018], a maioria dos movimentos corporais ocorre
numa faixa de frequéncia até 15Hz por ciclo de marcha. Assim, optou-se por uma taxa
de aquisi¢do sincrona e estdvel de até 1kHz para os dados capturados pelas palmilhas
instrumentadas.

Visando obter os angulos das articulagdes dos membros inferiores (conforme Fi-
gura 1), estimados com base nos dados adquiridos pelas palmilhas instrumentadas, este
projeto também utilizou seis sensores IMU BNOO055°, configurados modo de fusio de
dados com saida em angulos de Euler, os quais geram uma taxa de atualizagcdo de 100Hz.
Os dados sdo recebidos via barramento 12C multiplexado, gerenciado pela Raspberry Pi4.
Apesar da baixa frequéncia dos IMUs, a coleta desses dados foram retidos e sincronizados
para garantir uma taxa de amostragem de 1kHz, escolhida como padrdo para o processa-
mento do volume de dados. Posteriormente, os dados organizados na Raspberry PI4 sdo
disponibilizados via API remota para servicos com interfaces desenvolvidas no simulador
de robds CoppeliaSim©*, no Qt Creator’ e no Octave©S.

2.2. Moédulo de software desenvolvido

Na Figura 2, apresenta-se um fluxograma que descreve a arquitetura do cdédigo desenvol-
vido. A aquisi¢@o dos dados ocorre em threads independentes, com as informacdes de
cada sensor sendo armazenadas em varidveis globais auxiliares. Dessa forma, mesmo
quando uma das threads ndo tiver recebido uma nova amostra, o processo principal
continua utilizando o dltimo valor disponivel, evitando assim bloqueios e problemas de
sincronizagdo decorrentes das diferentes taxas de aquisi¢do entre os IMUs (100Hz) e as
palmilhas (1kHz).

A operagdo do sistema estd condicionada a conexdo com o ambiente de simulacao
CoppeliaSim, mantendo-se ativa enquanto o simulador estiver em funcionamento. Essa
abordagem permite o encerramento controlado da coleta de dados diretamente através da
interface do simulador, prevenindo interrup¢des abruptas no terminal supervisor quanto
a possiveis perdas de dados. Embora os dados sejam recebidos de forma independente
no cédigo, todos sdo posteriormente concatenados e armazenados em um tnico arquivo
estruturado, contendo metadados com o nimero total de amostras e os respectivos ti-
mestamps em segundos. Devido a taxa de amostragem limitada dos sensores BNOOS5S5

3Bosch Sensortec GmbH https://www.bosch-sensortec.com
*Coppelia Robotics AG https://www.coppeliarobotics.com
3The Qt Company https://www.qgt .10

SGNU Octave https://www.octave.org
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Figura 2. Fluxograma da recepcao de dados.
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(100Hz), foi necesséria a implementacao de threads dedicadas para a aquisi¢do dos dados
das palmilhas, garantindo assim a taxa de atualizacdo global desejada de 1kHz. Dessa
forma, a coleta dos dados ocorre de maneira assincrona e paralela, com um buffer de até
10 amostras dos IMUs, para manter a sincroniza¢do sem comprometer o desempenho dos
CAD:s.

2.3. Algoritmos utilizados para estimacao das trajetorias angulares

Classificacdo e regressao constituem abordagens fundamentais para tarefas preditivas em
mineracdo de dados. Enquanto técnicas de classificacdo sdo empregadas para categori-
zar sinais em rétulos discretos, os métodos de regressdao sdo mais adequados para prever
trajetdrias continuas ou sequéncias numéricas. Neste trabalho, as trajetorias angulares
das articulacdes, capturadas pelas IMUs, juntamente com os dados das palmilhas instru-
mentadas, foram utilizadas para desenvolver modelos ndo deterministicos por meio dos
seguintes algoritmos: k-NN, RNA, arvore de decisdo e floresta aleatoria. O principal ob-
jetivo consiste em estimar padroes de marcha antropomorfica (cinemédtica do movimento)
utilizando exclusivamente dados provenientes das palmilhas instrumentadas. Para isso,
sejam o0s sinais z.; € Re xq; € R, com i = 0, ..., 15, oriundos das palmilhas esquerda
e direita, respectivamente, e sejam os sinais ypyy; € R, com 7 = 1,...,6, corresponden-
tes aos angulos de Euler obtidos das seis IMUs, no plano sagital. O algoritmo k-NN é
um dos métodos de classificagdo de padrdes nao paramétricos mais conhecidos e ampla-
mente usados. Considerando 0s sinais X = [Teq, T, - - - ; Tels, Tdo, Ld1s - - -, Ta1s) € R
ey = [ymmul, Ymmus - - - Yimue) € RS (onde ’ denota o operador transposto), a ideia
central de regressdo via k-NN inicia-se com a escolha do hiperpardmetro k, que repre-
senta a quantidade de vizinhos mais proximos a serem identificados nos dados de en-
trada/saida. Esses vizinhos sdo entdo usados para determinar a classe da consulta com
base em métricas de similaridade (distancia) [Cunningham and Delany 2007].

O algoritmo de arvore de decisdo € um classificador expresso como uma particao
recursiva do espaco de instincias, comec¢ando pela raiz e formando uma estrutura
hierarquica composta por nés internos e folhas [Rokach and Maimon 2005]. J4 o al-
goritmo de floresta aleatéria [Breiman 2001] combina maltiplos preditores baseados em
arvores de decisdo, em que cada drvore depende de um vetor aleatério amostrado inde-
pendentemente - com a mesma distribuicao para todas as drvores da floresta. O erro de
generalizagdo da floresta converge a medida que o nimero de arvores aumenta, e seu de-



sempenho depende da robustez das arvores individuais e da correlacdo entre elas. Por
fim, a RNA Perceptron Multicamadas (Multilayer Perceptron - MLP), inspirada no sis-
tema nervoso bioldgico, consiste em um arranjo de unidades sensoriais distribuidas em
camadas de entrada, ocultas e de saida. Devido a sua capacidade de resolver problemas
numericamente complexos por meio de aprendizado supervisionado, tornou-se uma fer-
ramenta popular em aplicagdes avancadas [Haykin 2001].

Para determinar os modelos, recorremos a biblioteca de aprendizado de maquina
scikit-learn, de cédigo aberto, para a linguagem de programacdao Python - am-
plamente adotada em anélises de dados e modelagem preditiva. Essa biblioteca oferece
um extenso conjunto de ferramentas para tarefas como classifica¢do, regressdo e agru-
pamento, além de integragdo com outras bibliotecas cientificas, como NumPy, SciPy
e matplotlib, o que a torna eficiente e de fécil utilizagdo. Entre as principais
funcionalidades da biblioteca scikit-1learn, destacam-se as implementagdes de al-
goritmos de aprendizado supervisionado e nao supervisionado, incluindo regressao li-
near, miquinas de vetor de suporte (Support Vector Machines - SVM), arvores de de-
cisdo e k—-means; ferramentas para pré-processamento de dados, como normalizagao,
padronizacdo e transformacdo de caracteristicas; além de recursos para avaliacdo e
valida¢dao de modelos, incluindo validacdo cruzada, métricas de erro e matrizes de con-
fusao.

O treinamento dos modelos foi realizado na plataforma Google Colab, um am-
biente gratuito baseado em nuvem que permite escrever e executar codigo Python di-
retamente no navegador por notebooks Jupyter. Além da biblioteca scikit-learn,
foram empregadas as seguintes ferramentas: pandas, para criagdo e manipulacdo dos
dataframes utilizados no processo de treinamento; € joblib, para serializacdo e ar-
mazenamento dos modelos, possibilitando a reutilizagdo de modelos pré-treinados para
realizacdo de inferéncias.

3. Resultados e Discussoes

Os dados utilizados para treinamento consistiram em dois conjuntos de amostras coleta-
dos de um tnico individuo, representando trajetérias de ciclos de marcha (Figura 3). O
conjunto de treinamento foi composto exclusivamente por dados dos sensores inerciais
(IMUs) e das palmilhas, previamente organizados em um dataframe utilizando a bibli-
oteca pandas (entre trés e dez ciclos de marcha). Ja no conjunto de teste, as colunas
correspondentes as medi¢des articulares dos IMUs foram removidas, mantendo-se ape-
nas os dados das palmilhas. A Figura 3 ilustra dados das palmilhas para inferéncia com
apenas trés ciclos de marcha para comparagao.

Na etapa de inferéncia, utilizou-se um terceiro conjunto de amostras do mesmo
individuo, no qual os modelos receberam como entrada apenas os dados das palmilhas.
Com base nessas informagdes, foram estimadas separadamente as trajetérias de cada junta
articular.

A coleta de dados foi restrita a um anico individuo, visando obter o modelo mais
preciso, capaz de estimar trajetorias angulares. Essas trajetdrias seriam utilizadas no acio-
namento de uma Ortese ativa de joelho para membros inferiores. O estudo ndo teve como
finalidade desenvolver um modelo geral, mas sim analisar o desempenho dos algoritmos
k-NN, RNA, arvore de decisao e floresta aleatoria.
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Figura 3. Trajetorias de caminhada obtidas pelas palmilhas direita/esquerda e
IMUs.

As Figuras 4, 5, 6 e 7 ilustram os resultados de rastreamento das trajetdrias esti-
madas para os angulos do quadril, joelho e tornozelo pelos algoritmos k-NN, RNA, arvore
de decisdo e floresta aleatdria, respectivamente.
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Figura 4. Rastreamento de trajetorias dos angulos do quadril, joelho e tornozelo
estimados pelo algoritmo k-NN.
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Figura 5. Rastreamento de trajetorias dos angulos do quadril, joelho e tornozelo
estimados pelo algoritmo RNA.
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Figura 6. Rastreamento de trajetorias dos angulos do quadril, joelho e tornozelo
estimados pelo algoritmo de arvore de decisao.
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Figura 7. Rastreamento de trajetorias dos angulos do quadril, joelho e tornozelo
estimados pelo algoritmo de floresta aleatoria.

Tabela 1. Valores de RMSE (em graus) para cada modelo na estimativa dos
angulos articulares.

RMSE | k-NN RNA | arvore de decisao | floresta aleatoria
Hip 4,0011° | 3,8664° 4,4402° 0,5977°
Knee | 10,7709° | 9,7343° 6,2380° 2,1656°

Ankle | 13,8734° | 8,2947° 6,1409° 1,5966°

A Tabela 1 mostra que o modelo de floresta aleatéria obteve 0os menores erros
(RMSE) na estimag@o dos angulos articulares: 0,5977° (quadril), 2,1656° (joelho) e
1,5966° (tornozelo), destacando-se como o mais adequado para a tarefa.

A RNA teve bom desempenho no quadril (3,8664°), superando levemente o k-
NN (4,0011°) e a arvore de decisao (4,4402°). No entanto, tanto a RNA quanto o k-NN
apresentaram erros maiores no joelho e tornozelo, com o k-NN atingindo 13,8734° no
tornozelo.

A arvore de decisao teve desempenho intermedidrio no joelho (6,2380°) e torno-
zelo (6,1409°), superando a RNA e o k-NN nessas articulacdes, mas ainda abaixo do
algoritmo de floresta aleatoria.

Os resultados confirmam o melhor desempenho do algoritmo de floresta aleatoria



e reforcam a viabilidade de métodos de aprendizado de méaquina ndo paramétricos na
andlise biomecanica, mesmo diante de desafios como poucas amostras e ruidos nos dados.

Os melhores hiperparametros indicam que a floresta aleatéria obteve os me-
lhores resultados ao usar criterion=friedman_mse, min_samples_leaf=l,
min_impurity_decrease=0 para hip e knee, e 0,5 para ankle, com ccp_alpha=0e
random_state fixos. A arvore de decisdo adotou criterion=squared_error,
splitter variando entre best e random, min_samples_leaf de 1 ou 5,
e min_impurity_decrease=0,25. O k-NN obteve melhor desempenho com
n_neighbors 10 para hip e 20 para knee e ankle, weights distance ouuniform,
e métrica manhattan. A RNA usou entre 25 e 100 neur6nios, ativacdo 1ogistic ou
tanh, otimizador sgd e alpha entre 0,0001 e 0,001.

Esses ajustes especificos mostram que o algoritmo de floresta aleatéria é mais
robusta e precisa na estimacdo dos angulos articulares, enquanto a arvore de decisdo,
k-NN e RNA apresentam maior sensibilidade e erros, principalmente no ankle.

Durante o desenvolvimento deste trabalho, foram alcancados resultados signifi-
cativos, demonstrando que € possivel estimar a cinematica do movimento dos membros
inferiores durante a marcha utilizando apenas os dados gerados pela palmilha instrumen-
tada.

Observou-se que um modelo devidamente treinado, com o auxilio dos dados pro-
venientes da palmilha e de trés IMUs posicionados em cada perna, consegue acompanhar
os movimentos de um determinado individuo. Com base nos pontos de pressdo detec-
tados pela palmilha, é possivel inferir o processo da marcha, ainda que, no momento, a
estimativa esteja limitada aos angulos articulares.

4. Conclusao

Neste trabalho, explorou-se a utiliza¢do de palmilhas instrumentadas para andlise da mar-
cha humana por meio do treinamento de quatro modelos distintos de aprendizado de
maquina. Com base em sinais provenientes de IMUs e sensores piezorresistivos em-
butidos nas palmilhas, demonstrou-se a viabilidade de estimar as trajetérias angulares dos
membros inferiores durante a marcha, sem a necessidade de sensores adicionais.

Os resultados revelaram que o modelo de floresta aleatdria obteve o melhor de-
sempenho, apresentando erros significativamente menores comparados aos demais mo-
delos avaliados. Entretanto, observou-se a presenga de ruidos nas predigdes, possivel-
mente decorrentes: (i) do desempenho intrinseco dos algoritmos, (ii) da selecao de hiper-
parametros, e (iii) do possivel nimero limitado de amostras de trajetorias.

Como perspectivas futuras, recomenda-se: a aplicacdo de técnicas de filtragem
que preservem as caracteristicas individuais dos dados, e a ampliacdo do conjunto de
amostras para otimizar o erro de rastreamento. Além disso, as trajetrias estimadas serdo
usadas como sinais de referéncia para o acionamento e controle de uma Ortese ativa de
joelho projetada no Laboratério de Processamento de Sinais do DTEC/UEFS.

Este estudo confirma avangos significativos na aplicacdo de modelos de regressao
ndo paramétricos para estimativa cinematica da marcha, demonstrando potencial para:
controle inteligente de Orteses ativas, otimizacao de dispositivos vestiveis e integracao
com sistemas de [oHT.
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