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Abstract. This work presents an interface for monitoring anthropomorphic gait,
with estimation and analysis of movement kinematics based on data collected by
sixteen prefabricated piezoresistive sensors arranged in insoles. The instrumen-
ted system also includes six inertial measurement units attached to the articular
segments of the lower limbs, enabling the tracking of joint trajectories. For the
estimation of these trajectories, four non-parametric machine learning compu-
tational models were evaluated: k-NN, ANN, decision tree, and random forest.
The results demonstrate the feasibility of applying pattern classification-based
models to estimate joint angles, with potential applications in driving active
orthosis joints or rehabilitation devices.

Resumo. Neste trabalho, apresenta-se uma interface para o monitoramento
da marcha antropomórfica, com estimação e análise da cinemática do movi-
mento a partir de dados coletados por dezesseis sensores piezorresistivos pré-
fabricados, dispostos em palmilhas. O sistema instrumentado também inclui
seis unidades de medida inercial fixadas aos segmentos articulares dos membros
inferiores, permitindo o rastreamento das trajetórias das articulações. Para a
estimação dessas trajetórias, foram determinados quatro modelos computacio-
nais de aprendizado de máquinas não paramétricas: k-NN, RNA, árvore de de-
cisão e floresta aleatória. Os resultados demonstram a viabilidade da aplicação
de modelos baseados em classificação de padrões, que podem ser utilizados no
acionamento de juntas de órteses ativas ou em dispositivos de reabilitação.

1. Introdução
A marcha humana, ou locomoção bı́pede, é um processo cı́clico e complexo que possi-
bilita o deslocamento do corpo, mediado pela interação entre os sistemas neuromuscular
e esquelético. Esse movimento é caracterizado pela alternância entre as fases de apoio e
balanço em cada membro inferior, delimitadas pelos eventos de contato inicial (calcanhar)
e desprendimento (dedos) do pé com o solo (ciclo de passada) [Lin et al. 2016]. Durante o
intervalo de apoio (aproximadamente 62% do ciclo da marcha) [Leal-Junior et al. 2018],
observam-se variações na velocidade, impulsos e forças de reação do solo, as quais re-
fletem exigências de manobra e eficiência energética. A distribuição da pressão plantar e
a cinemática da marcha são diretamente influenciadas pela dinâmica articular - posição,



velocidade e aceleração dos segmentos dos membros inferiores. Além disso, alterações
nos padrões de marcha constituem indicadores precoces de comorbidades crônicas, como
acidente vascular cerebral (AVC), demência, doença de Parkinson, câncer, cardiopatias e
diabetes [Hao et al. 2020]. Tais alterações decorrem de compensações neuromusculares
ou degenerações estruturais, que modificam a dinâmica articular e, consequentemente, os
padrões de pressão plantar.

O monitoramento e a análise da marcha possuem aplicações multidisciplinares,
abrangendo áreas como medicina, esportes, geriatria, reabilitação e diagnóstico. Tradi-
cionalmente, a precisão dessas análises depende de medições realizadas em laboratórios
especializados, equipados com sistemas de câmeras de alta resolução, sensores corporais,
esteiras instrumentadas e unidades de processamento integradas - recursos que, embora
ofereçam alta acurácia, envolvem custos elevados [Antoniou et al. 2023]. No entanto,
essas metodologias apresentam limitações crı́ticas: 1. Restrições espaciais e temporais,
os dados coletados em ambientes controlados nem sempre refletem a marcha natural do
paciente em seu cotidiano, comprometendo a validade clı́nica dos diagnósticos. 2. Com-
plexidade operacional, sistemas baseados em múltiplas câmeras exigem processos de pós-
análise demorados, enquanto esteiras instrumentadas não reproduzem contextos reais de
caminhada ou fornecem alertas preventivos para quedas. 3. Barreiras de acesso, o alto
custo e a necessidade de infraestrutura especializada tornam esses métodos inviáveis para
idosos com mobilidade reduzida, especialmente em regiões com poucos centros de re-
ferência - como muitas cidades do interior da Bahia. Diante desses desafios, torna-se
urgente o uso de soluções acessı́veis que permitam o monitoramento remoto da marcha,
combinando praticidade, confiabilidade e inclusão. Tal abordagem seria particularmente
relevante para a população idosa, garantindo acompanhamento contı́nuo sem a necessi-
dade de deslocamentos dispendiosos.

O avanço de sensores vestı́veis e da Internet das Coisas para a Saúde (Internet of
Health Things - IoHT), tem democratizado a análise da marcha, possibilitando monitora-
mento em ambientes naturais e confortáveis, superando as limitações do ambiente labora-
torial. Estudos recentes ilustram esse progresso, por exemplo, em [Chen et al. 2020] pro-
puseram um sistema de palmilha instrumentada que extrai vinte seis parâmetros clı́nicos
da marcha, aplicando o conceito de “marcha baseada em termos de atividades da vida
diária” para maior relevância clı́nica. No entanto, em [Nguyen et al. 2018], utilizaram
dados de pressão plantar e algoritmos k-NN para classificar cinco atividades ambula-
toriais - caminhada em terreno plano, descida de rampa, subida de rampa, descida de
escada e subida de escada. O tempo da passada, comprimento e a velocidade da mar-
cha, validando a aplicação em ecossistemas reais, foram propostos usando um modelo
SVM em [Duong et al. 2022]. Já os parâmetros cinemáticos, cinéticos e trajetórias do
centro de pressão a partir da distribuição plantar foram estimados em [Zhang et al. 2017],
com o sistema denominado SportSole. Em [Ansah et al. 2023] combinaram palmilhas
instrumentadas com IMUs para detecção contı́nua de passos arrastados, auxiliando no
diagnóstico precoce de doença de Parkinson.

Este trabalho propõe uma solução de interface para compartilhamento de dados
destinada à estimação da marcha empregando palmilhas pré-fabricadas e instrumentadas.
O sistema foi projetado para ser não intrusivo e de fácil adoção no cotidiano, permitindo
sua inserção em calçados convencionais como uma palmilha comum. As informações



dinâmicas durante todas as fases da marcha são capturados a tempo real a partir de dezes-
seis sensores piezorresistivos, condicionadas, filtradas, convertidas e pré-processadas por
um microcontrolador STM32H743, para posteriormente serem compartilhados via inter-
face remota para análise em um computador. A cinemática da marcha antropomórfica é
estimada utilizando quatro algoritmos de aprendizado de máquina não paramétricos: k-
vizinhos mais próximos, (k Nearest Neighbors - k-NN), Rede Neural Artificial (RNA),
árvore de decisão e floresta aleatória. O desenvolvimento do sistema será detalhado
nas seguintes seções: Metodologia, descrição dos materiais, configuração experimental
e técnicas de processamento de dados; Resultados e Discussões, análise comparativa do
desempenho dos algoritmos e validação dos modelos, e Conclusão, implicações práticas,
limitações e direcionamentos futuros.

2. Metodologia
A Figura 1 ilustra a arquitetura do sistema de aquisição desenvolvido para: supervisão
remota da marcha antropomórfica, treinamento de modelos de aprendizado de máquina,
regressão e análise qualitativa dos modelos para estimação da marcha.
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Figura 1. Diagrama em blocos do sistema de hardware implementado.

2.1. Módulo de hardware desenvolvido
Palmilhas modelo FS-INS-16Z1 foram instrumentadas para capturar sinais provenientes
de dezesseis pontos de pressão piezorresistivos, os quais foram condicionados e limi-
tados em banda por filtros antialiasing de primeira ordem, como etapa inicial da mon-
tagem do protótipo. Em seguida, os sinais analógicos foram digitalizados pelos dezes-
seis Conversores Analógico-Digital (CAD) do microcontrolador STM32H7432 para pos-
terior compartilhamento com o sistema embarcado Raspberry PI4. Conforme ilustrado
na Figura 1, também foi implementada a aquisição de dados de seis Unidades de Me-
dida Inerciais (Inertial Measurement Units - IMUs), cujos sinais foram compartilhados

1Legact®https://film-sensor.com/product/pressure-mapping-fs-ins-16z
2STMicroeletronics©https://www.st.com



via barramento I2C multiplexado. Os microcontroladores foram programadas utilizando
a plataforma STM32CubeIDE, desenvolvida pela STMicroelectronics©, fabricante dos
microcontroladores STM. O microcontrolador STM32H743 incorpora uma CPU Arm
Cortex®-M7 de 480MHz com FPU e três CADs SAR (ADC1, ADC2 e ADC3, com
até 20 canais analógicos cada), oferecendo resoluções de até 16 bits e taxas de amostra-
gem entre 3,6MSps até 7,1MSps. Para este projeto, foram utilizados 16 canais analógicos
dos conversores ADC1 e ADC3, configurados com DMA (Direct Memory Access) de
resoluções de 14 bits. Para garantir o tempo de conversão adequado, um temporizador in-
terno (TIM3) foi utilizado para gerenciar a sinalização de fim de conversão dos 16 CADs,
com uma taxa de 387,5 ciclos do clock do processador de 240MHz.

Contudo, no contexto desta pesquisa, que se centra na análise da marcha humana,
conforme referido em [Aggarwal et al. 2018], a maioria dos movimentos corporais ocorre
numa faixa de frequência até 15Hz por ciclo de marcha. Assim, optou-se por uma taxa
de aquisição sı́ncrona e estável de até 1kHz para os dados capturados pelas palmilhas
instrumentadas.

Visando obter os ângulos das articulações dos membros inferiores (conforme Fi-
gura 1), estimados com base nos dados adquiridos pelas palmilhas instrumentadas, este
projeto também utilizou seis sensores IMU BNO0553, configurados modo de fusão de
dados com saı́da em ângulos de Euler, os quais geram uma taxa de atualização de 100Hz.
Os dados são recebidos via barramento I2C multiplexado, gerenciado pela Raspberry Pi4.
Apesar da baixa frequência dos IMUs, a coleta desses dados foram retidos e sincronizados
para garantir uma taxa de amostragem de 1kHz, escolhida como padrão para o processa-
mento do volume de dados. Posteriormente, os dados organizados na Raspberry PI4 são
disponibilizados via API remota para serviços com interfaces desenvolvidas no simulador
de robôs CoppeliaSim©4, no Qt Creator5 e no Octave©6.

2.2. Módulo de software desenvolvido
Na Figura 2, apresenta-se um fluxograma que descreve a arquitetura do código desenvol-
vido. A aquisição dos dados ocorre em threads independentes, com as informações de
cada sensor sendo armazenadas em variáveis globais auxiliares. Dessa forma, mesmo
quando uma das threads não tiver recebido uma nova amostra, o processo principal
continua utilizando o último valor disponı́vel, evitando assim bloqueios e problemas de
sincronização decorrentes das diferentes taxas de aquisição entre os IMUs (100Hz) e as
palmilhas (1kHz).

A operação do sistema está condicionada à conexão com o ambiente de simulação
CoppeliaSim, mantendo-se ativa enquanto o simulador estiver em funcionamento. Essa
abordagem permite o encerramento controlado da coleta de dados diretamente através da
interface do simulador, prevenindo interrupções abruptas no terminal supervisor quanto
a possı́veis perdas de dados. Embora os dados sejam recebidos de forma independente
no código, todos são posteriormente concatenados e armazenados em um único arquivo
estruturado, contendo metadados com o número total de amostras e os respectivos ti-
mestamps em segundos. Devido à taxa de amostragem limitada dos sensores BNO055

3Bosch Sensortec GmbH https://www.bosch-sensortec.com
4Coppelia Robotics AG https://www.coppeliarobotics.com
5The Qt Company https://www.qt.io
6GNU Octave https://www.octave.org
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Figura 2. Fluxograma da recepção de dados.

(100Hz), foi necessária a implementação de threads dedicadas para a aquisição dos dados
das palmilhas, garantindo assim a taxa de atualização global desejada de 1kHz. Dessa
forma, a coleta dos dados ocorre de maneira assı́ncrona e paralela, com um buffer de até
10 amostras dos IMUs, para manter a sincronização sem comprometer o desempenho dos
CADs.

2.3. Algoritmos utilizados para estimação das trajetórias angulares

Classificação e regressão constituem abordagens fundamentais para tarefas preditivas em
mineração de dados. Enquanto técnicas de classificação são empregadas para categori-
zar sinais em rótulos discretos, os métodos de regressão são mais adequados para prever
trajetórias contı́nuas ou sequências numéricas. Neste trabalho, as trajetórias angulares
das articulações, capturadas pelas IMUs, juntamente com os dados das palmilhas instru-
mentadas, foram utilizadas para desenvolver modelos não determinı́sticos por meio dos
seguintes algoritmos: k-NN, RNA, árvore de decisão e floresta aleatória. O principal ob-
jetivo consiste em estimar padrões de marcha antropomórfica (cinemática do movimento)
utilizando exclusivamente dados provenientes das palmilhas instrumentadas. Para isso,
sejam os sinais xei ∈ R e xdi ∈ R, com i = 0, . . . , 15, oriundos das palmilhas esquerda
e direita, respectivamente, e sejam os sinais yIMUi ∈ R, com i = 1, . . . , 6, corresponden-
tes aos ângulos de Euler obtidos das seis IMUs, no plano sagital. O algoritmo k-NN é
um dos métodos de classificação de padrões não paramétricos mais conhecidos e ampla-
mente usados. Considerando os sinais x = [xe0, xe1, . . . , xe15, xd0, xd1, . . . , xd15]

′ ∈ R32

e y = [yIMU1, yIMU2, . . . , yIMU6]
′ ∈ R6 (onde ′ denota o operador transposto), a ideia

central de regressão via k-NN inicia-se com a escolha do hiperparâmetro k, que repre-
senta a quantidade de vizinhos mais próximos a serem identificados nos dados de en-
trada/saı́da. Esses vizinhos são então usados para determinar a classe da consulta com
base em métricas de similaridade (distância) [Cunningham and Delany 2007].

O algoritmo de árvore de decisão é um classificador expresso como uma partição
recursiva do espaço de instâncias, começando pela raiz e formando uma estrutura
hierárquica composta por nós internos e folhas [Rokach and Maimon 2005]. Já o al-
goritmo de floresta aleatória [Breiman 2001] combina múltiplos preditores baseados em
árvores de decisão, em que cada árvore depende de um vetor aleatório amostrado inde-
pendentemente - com a mesma distribuição para todas as árvores da floresta. O erro de
generalização da floresta converge à medida que o número de árvores aumenta, e seu de-



sempenho depende da robustez das árvores individuais e da correlação entre elas. Por
fim, a RNA Perceptron Multicamadas (Multilayer Perceptron - MLP), inspirada no sis-
tema nervoso biológico, consiste em um arranjo de unidades sensoriais distribuı́das em
camadas de entrada, ocultas e de saı́da. Devido à sua capacidade de resolver problemas
numericamente complexos por meio de aprendizado supervisionado, tornou-se uma fer-
ramenta popular em aplicações avançadas [Haykin 2001].

Para determinar os modelos, recorremos à biblioteca de aprendizado de máquina
scikit-learn, de código aberto, para a linguagem de programação Python - am-
plamente adotada em análises de dados e modelagem preditiva. Essa biblioteca oferece
um extenso conjunto de ferramentas para tarefas como classificação, regressão e agru-
pamento, além de integração com outras bibliotecas cientı́ficas, como NumPy, SciPy
e matplotlib, o que a torna eficiente e de fácil utilização. Entre as principais
funcionalidades da biblioteca scikit-learn, destacam-se as implementações de al-
goritmos de aprendizado supervisionado e não supervisionado, incluindo regressão li-
near, máquinas de vetor de suporte (Support Vector Machines - SVM), árvores de de-
cisão e k-means; ferramentas para pré-processamento de dados, como normalização,
padronização e transformação de caracterı́sticas; além de recursos para avaliação e
validação de modelos, incluindo validação cruzada, métricas de erro e matrizes de con-
fusão.

O treinamento dos modelos foi realizado na plataforma Google Colab, um am-
biente gratuito baseado em nuvem que permite escrever e executar código Python di-
retamente no navegador por notebooks Jupyter. Além da biblioteca scikit-learn,
foram empregadas as seguintes ferramentas: pandas, para criação e manipulação dos
dataframes utilizados no processo de treinamento; e joblib, para serialização e ar-
mazenamento dos modelos, possibilitando a reutilização de modelos pré-treinados para
realização de inferências.

3. Resultados e Discussões
Os dados utilizados para treinamento consistiram em dois conjuntos de amostras coleta-
dos de um único indivı́duo, representando trajetórias de ciclos de marcha (Figura 3). O
conjunto de treinamento foi composto exclusivamente por dados dos sensores inerciais
(IMUs) e das palmilhas, previamente organizados em um dataframe utilizando a bibli-
oteca pandas (entre três e dez ciclos de marcha). Já no conjunto de teste, as colunas
correspondentes às medições articulares dos IMUs foram removidas, mantendo-se ape-
nas os dados das palmilhas. A Figura 3 ilustra dados das palmilhas para inferência com
apenas três ciclos de marcha para comparação.

Na etapa de inferência, utilizou-se um terceiro conjunto de amostras do mesmo
indivı́duo, no qual os modelos receberam como entrada apenas os dados das palmilhas.
Com base nessas informações, foram estimadas separadamente as trajetórias de cada junta
articular.

A coleta de dados foi restrita a um único indivı́duo, visando obter o modelo mais
preciso, capaz de estimar trajetórias angulares. Essas trajetórias seriam utilizadas no acio-
namento de uma órtese ativa de joelho para membros inferiores. O estudo não teve como
finalidade desenvolver um modelo geral, mas sim analisar o desempenho dos algoritmos
k-NN, RNA, árvore de decisão e floresta aleatória.



Ciclo da marcha

Figura 3. Trajetórias de caminhada obtidas pelas palmilhas direita/esquerda e
IMUs.

As Figuras 4, 5, 6 e 7 ilustram os resultados de rastreamento das trajetórias esti-
madas para os ângulos do quadril, joelho e tornozelo pelos algoritmos k-NN, RNA, árvore
de decisão e floresta aleatória, respectivamente.

Figura 4. Rastreamento de trajetórias dos ângulos do quadril, joelho e tornozelo
estimados pelo algoritmo k-NN.

Figura 5. Rastreamento de trajetórias dos ângulos do quadril, joelho e tornozelo
estimados pelo algoritmo RNA.



Figura 6. Rastreamento de trajetórias dos ângulos do quadril, joelho e tornozelo
estimados pelo algoritmo de árvore de decisão.

Figura 7. Rastreamento de trajetórias dos ângulos do quadril, joelho e tornozelo
estimados pelo algoritmo de floresta aleatória.

Tabela 1. Valores de RMSE (em graus) para cada modelo na estimativa dos
ângulos articulares.

RMSE k-NN RNA árvore de decisão floresta aleatória
Hip 4,0011° 3,8664° 4,4402° 0,5977°

Knee 10,7709° 9,7343° 6,2380° 2,1656°
Ankle 13,8734° 8,2947° 6,1409° 1,5966°

A Tabela 1 mostra que o modelo de floresta aleatória obteve os menores erros
(RMSE) na estimação dos ângulos articulares: 0,5977° (quadril), 2,1656° (joelho) e
1,5966° (tornozelo), destacando-se como o mais adequado para a tarefa.

A RNA teve bom desempenho no quadril (3,8664°), superando levemente o k-
NN (4,0011°) e a árvore de decisão (4,4402°). No entanto, tanto a RNA quanto o k-NN
apresentaram erros maiores no joelho e tornozelo, com o k-NN atingindo 13,8734° no
tornozelo.

A árvore de decisão teve desempenho intermediário no joelho (6,2380°) e torno-
zelo (6,1409°), superando a RNA e o k-NN nessas articulações, mas ainda abaixo do
algoritmo de floresta aleatória.

Os resultados confirmam o melhor desempenho do algoritmo de floresta aleatória



e reforçam a viabilidade de métodos de aprendizado de máquina não paramétricos na
análise biomecânica, mesmo diante de desafios como poucas amostras e ruı́dos nos dados.

Os melhores hiperparâmetros indicam que a floresta aleatória obteve os me-
lhores resultados ao usar criterion=friedman mse, min samples leaf=1,
min impurity decrease=0 para hip e knee, e 0,5 para ankle, com ccp alpha=0 e
random state fixos. A árvore de decisão adotou criterion=squared error,
splitter variando entre best e random, min samples leaf de 1 ou 5,
e min impurity decrease=0,25. O k-NN obteve melhor desempenho com
n neighbors 10 para hip e 20 para knee e ankle, weights distance ou uniform,
e métrica manhattan. A RNA usou entre 25 e 100 neurônios, ativação logistic ou
tanh, otimizador sgd e alpha entre 0,0001 e 0,001.

Esses ajustes especı́ficos mostram que o algoritmo de floresta aleatória é mais
robusta e precisa na estimação dos ângulos articulares, enquanto a árvore de decisão,
k-NN e RNA apresentam maior sensibilidade e erros, principalmente no ankle.

Durante o desenvolvimento deste trabalho, foram alcançados resultados signifi-
cativos, demonstrando que é possı́vel estimar a cinemática do movimento dos membros
inferiores durante a marcha utilizando apenas os dados gerados pela palmilha instrumen-
tada.

Observou-se que um modelo devidamente treinado, com o auxı́lio dos dados pro-
venientes da palmilha e de três IMUs posicionados em cada perna, consegue acompanhar
os movimentos de um determinado indivı́duo. Com base nos pontos de pressão detec-
tados pela palmilha, é possı́vel inferir o processo da marcha, ainda que, no momento, a
estimativa esteja limitada aos ângulos articulares.

4. Conclusão
Neste trabalho, explorou-se a utilização de palmilhas instrumentadas para análise da mar-
cha humana por meio do treinamento de quatro modelos distintos de aprendizado de
máquina. Com base em sinais provenientes de IMUs e sensores piezorresistivos em-
butidos nas palmilhas, demonstrou-se a viabilidade de estimar as trajetórias angulares dos
membros inferiores durante a marcha, sem a necessidade de sensores adicionais.

Os resultados revelaram que o modelo de floresta aleatória obteve o melhor de-
sempenho, apresentando erros significativamente menores comparados aos demais mo-
delos avaliados. Entretanto, observou-se a presença de ruı́dos nas predições, possivel-
mente decorrentes: (i) do desempenho intrı́nseco dos algoritmos, (ii) da seleção de hiper-
parâmetros, e (iii) do possı́vel número limitado de amostras de trajetórias.

Como perspectivas futuras, recomenda-se: a aplicação de técnicas de filtragem
que preservem as caracterı́sticas individuais dos dados, e a ampliação do conjunto de
amostras para otimizar o erro de rastreamento. Além disso, as trajetórias estimadas serão
usadas como sinais de referência para o acionamento e controle de uma órtese ativa de
joelho projetada no Laboratório de Processamento de Sinais do DTEC/UEFS.

Este estudo confirma avanços significativos na aplicação de modelos de regressão
não paramétricos para estimativa cinemática da marcha, demonstrando potencial para:
controle inteligente de órteses ativas, otimização de dispositivos vestı́veis e integração
com sistemas de IoHT.
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