
GraphBLAS para Rust

Robert Morais Santos Broketa1, Hamilton José Brumatto1, Vânia Cordeiro da Silva1

1Departamento de Ciência da Computação
Universidade Estadual de Santa Cruz (UESC) – Ilhéus, BA – Brasil

rmsbroketa.cic@uesc.br, hjbrumatto@uesc.br, vania@uesc.br

Abstract. This work explores the implementation of GraphBLAS, a linear

algebra-based library for graph algorithms, using the Rust programming lan-

guage. GraphBLAS is a symbolic language that uses sparse matrix and vector

operations to efficiently represent and manipulate graphs, allowing the deve-

lopment of algorithms related to them. Rust’s strong guarantees for memory

safety, concurrency, and performance make it a candidate for building a library

like GraphBLAS. This study applies the theoretical foundations of GraphBLAS,

including its algebraic structures such as monoids and semirings, using Rust’s

typing system and programming paradigms.

Resumo. Este trabalho explora a implementação do GraphBLAS, uma bibli-

oteca baseada em álgebra linear para algoritmos de grafos, na linguagem de

programação Rust. O GraphBLAS é uma linguagem simbólica que utiliza ope-

rações com matrizes esparsas e vetores para representar e manipular grafos de

forma eficiente, permitindo o desenvolvimento de algoritmos relacionados aos

mesmos. As fortes garantias do Rust para segurança de memória, concorrência

e desempenho o torna um candidato para a construção de uma biblioteca como

o GraphBLAS. Este estudo aplica os fundamentos teóricos do GraphBLAS, in-

cluindo suas estruturas algébricas, como monoides e semianéis, utilizando o

sistema de tipagem e paradigmas de programação do Rust.

1. Introdução

O uso de grafos na modelagem de dados tem sido de extrema importância pois
grafos conseguem relacionar instâncias, guardando informações sobre as instâncias bem
como sobre as relações. Vários estudos em teoria de grafos foram realizados e destes
decorrem importantes algoritmos [Bondy and Murty 2008]. Porém diferente de estruturas
de dados lineares, como Pilhas, Filas, Mapas e outras que possuem um grande conjunto
de bibliotecas prontas em várias linguagens, as linguagens de programação não definem
um conjunto de bibliotecas para grafos e seus algoritmos.

Isto decorre do fato de que grafos possuem uma grande flexibilidade no tratamento
de suas informações, pois não há um padrão claro de todas as informações que precisam
ser armazenadas e os grafos podem ser representados em diversas formas, entre elas a
matriz de adjacência, matriz de incidência e lista de adjacência [Bondy and Murty 2008].

Os grafos quando armazenados na forma de matriz, seja de adjacência ou seja
de incidência, podem fazer o uso de operações da álgebra linear para implementação de
seus algoritmos. Desta forma, já podemos contar com um conjunto de bibliotecas que são
preparadas para tratar operações de matrizes e vetores em álgebra linear. Normalmente

esta classe de bibliotecas é denominada de BLAS (Basic Linear Algebra Subprograms).
Nela encontramos operações como soma de matrizes produto entre matrizes e vetores,
inversão de matrizes, decomposição de matrizes entre outras [Blackford et al. 2002].

Com isto surgiu a proposta de uma linguagem de implementação de alto nível ba-
seada em operações da álgebra linear para implementar os algoritmos em grafos. Nasce
então o GraphBLAS [Community]. O GraphBLAS representa um conjunto de ope-
rações da álgebra linear que podem ser encadeadas formando um algoritmo de grafo
[Davis 2019]. Com isto começaram a ser construídas APIs (Application Program In-

terface) para traduzir ou implementar GraphBLAS em várias linguagens, como C/C++,
MPI/C++, Java, entre outras.

Neste trabalho a proposta é dar um início a um projeto que venha a criar API do
GraphBLAS para a linguagem Rust. Rust é uma linguagem de programação relativamente
nova que permite desenvolver sistemas seguros e eficientes, sem recorrer a práticas como
Coletores de Lixo (Garbage Collectors) [Klabnik and Nichols 2023].

Este trabalho está dividido da seguinte forma, na seção 2 são apresentados os
conceitos relacionados ao GraphBLAS e a representação dos grafos com base na álge-
bra linear. Na seção 3 estão apresentadas as operações da álgebra linear com vistas às
operações do GraphBLAS. Na seção 4 faz-se uma apresentação da linguagem Rust e na
seção 5 propõe-se a implementação de elementos básicos do GraphBLAS e Álgebra Li-
near na linguagem Rust e na seção 6 uma demonstração de construção de algoritmo com
esta implementação. Por fim, na seção 7 ponderamos as conclusões finais a respeito do
trabalho.

2. GraphBLAS

GraphBLAS é um conjunto padronizado de APIs para executar análises e opera-
ções em grafos utilizando métodos baseados em matrizes. A biblioteca parte da ideia de
que matrizes esparsas podem ser usadas para representar grafos como matrizes de adja-
cência ou de incidência. Dessa forma operações em grafos podem ser executadas como
transformações lineares e outras operações da álgebra linear. Conceitualmente, vértices
de um grafo são representados por linhas e colunas de uma matriz de adjacência, e arestas
correspondem a valores não zero da mesma.

GraphBLAS se baseia no BLAS, ambos representam um conjunto de subrotinas
ou funções e descrições de estruturas ou classes que oferecem um conjunto básico de ope-
rações da Álgebra Linear, como produto entre vetores, produto matriz-vetor, inversão de
matrizes, e outras. O objetivo do BLAS é fornecer apoio às várias operações da álgebra
linear, já no GraphBLAS é fornecer apoio às várias operações baseadas na álgebra linear
que permitam construir algoritmos em grafos, como exemplificado na Figura (1). As prin-
cipais aplicações de algoritmos com GraphBLAS se concentram em datamining e base de
dados volumosas. Desta forma, soluções robustas, paralelas e eficientes são necessárias
nas implementações desta biblioteca.

2.1. Matrizes de Adjacência

Um grafo pode ser modelados na forma de Matriz de
Adjacência[Kepner et al. 2016]. Tal matriz geralmente quadrada, pois as linhas e

Figura 1. Representação de uma etapa de uma busca em largura
Fonte: The GraphBLAS community [Community]

colunas são o mesmo conjunto de vértices representam ligações entre vértices adjacentes.
Mas podem ser conjuntos disjuntos de vértices, a exemplo de grafos bipartidos.

Dada uma matriz de adjacência A para um grafo orientado, se A(v1, v2) = 1,
então existe um arco do vértice v1 para o vértice v2, vide Figura (2). Observe que A(v1, v2)
não é equivalente a A(v2, v1), pois seriam arcos distintos. Matrizes de adjacência também
podem conter pesos associados aos seus arcos. Se A(v1, v2) = w12 6= 0, então o arco de
v1 para v2 contém o peso w12 como podemos ver representado na Figura (2).

v1 v2

v3

w12

w13 w32

Figura 2. Exemplo de um grafo orientado com peso nos arcos

2.2. Matriz de Incidência

Matrizes de incidência podem ser usadas para representar grafos que
possuam quaisquer das propriedades: orientados, k-partidos, multigrafos e/ou
hipergrafos[Kepner et al. 2016].

Uma matriz de incidência E utiliza as linhas para representar cada aresta ou arco
do grafo e as colunas representam cada vértice, o valor armazenado na matriz é o grau de
incidência da aresta sobre o vértice.

Em um grafo não orientado, podemos considerar a relação de incidência Ψ(a) =
{v1, v2} representada na matriz de incidência com E(a, 1) = 1 e E(a, 2) = 1 como
indicação de que aresta a é uma ligação entre v1 e v2, no caso de e, que é um laço em v3,
temos que E(e, 3) = 2, como podemos ver na Figura (3).

Em um hipergrafo uma aresta pode representar a ligação entre mais de dois vér-
tices. Da mesma forma que em um grafo comum, no hipergrafo cada vértice recebe o
grau da incidência da aresta ou arco sobre ele. Exemplificando, para denotar um hipe-
rarco a que possui uma ligação com caudas em v1 e v2 e cabeça em v3 basta indicar que
E(a, 1) = −1, E(a, 2) = −1 e E(a, 3) = 1, como podemos ver na Figura (4). Por outro
lado se o hipergrafo não é orientado, e a é uma hiperaresta entre v1, v2 e v3, cada vértice
possui o grau 1 de incidência a partir desta hiperaresta.

1 2 3 4
a

b

c

d

e













1 1 0 0
1 0 1 0
0 1 0 1
0 1 1 0
0 0 2 0













1

2 3

4

a b

c

d

e

Figura 3. Matriz de incidência representando um grafo não orientado

1 2 3
a

b

c





−1 −1 1
1 0 −1
0 1 −1





1

2
3

b

c

a

Figura 4. Matriz de incidência representando um hipergrafo orientado

3. Matrizes, Álgebra Linear e GraphBLAS [Kepner et al. 2016]

Apesar da notação formal de Matrizes de transformação em espaços vetoriais na
Álgebra Linear, no uso destas no contexto da GraphBLAS seremos menos formais.

A definição canônica de matriz no contexto do GraphBLAS que possui m linhas
e n colunas de números reais está representada na Eq. (1).

A : Rm×n (1)

Os índices das linhas e colunas de uma matriz A são, respectivamente, i ∈ I =
{1, ...,m} e j ∈ J = {1, ..., n}, de forma que qualquer valor de A pode ser denotado por
A(i, j). Isto não está restrito ao conjunto dos reais, de forma semelhante a matriz A pode
armazenar valores do conjunto dos complexos, números inteiros e números naturais.

Canonicamente índices de linhas e colunas são números naturais I, J : N. Porém
algumas implementações do GraphBLAS podem apresentar índices não negativos I =
{0, ...,m− 1} e J = {0, ..., n− 1}.

Para GraphBLAS uma matriz é definida pela seguinte notação em 2D:

A : I × J → S (2)

onde índices I, J : Z são inteiros finitos não negativos com m e n elementos, respecti-
vamente, e S ∈ {R,Z,N, ...} é um conjunto de escalares. Sem perda de generalidade
matrizes podem ser denotadas por:

A : Sm×n (3)

Um vetor puro é denotado por:

v = S
m (4)

Tabela 1. Grupos e Operações

GRUPO DOMÍNIO ⊕ ⊗ ZERO IDENTIDADE ANIQUILADOR

Aritmética
dos Reais

a ∈ R + × 0 a+ 0 = a a× 0 = 0

Álgebra
Min-Plus

a ∈ {R ∪ −∞} min + ∞ min(a,∞) = a a+∞ = ∞

Álgebra
Max-Min

R
+ max min 0 max(a, 0) = a min(a, 0) = 0

Conjunto
de Partes

P(Z) ∪ ∩ ∅ a ∪ ∅ = a a ∩ ∅ = ∅

Um escalar é um elemento singular de um conjunto s ∈ S e não possui dimensões.

3.1. Operações e Propriedades Escalares

Operações de matrizes existentes no GraphBLAS são construídas a partir de ope-
rações que chamamos de escalares. As operações escalares primárias são adição arit-
mética (1 + 1 = 2) e multiplicação (2 × 2 = 4). GraphBLAS também permite que
essas operações de adição e multiplicação sejam definidas pelo implementador ou usuá-
rio. Para evitar confusão com as operações primárias, ⊕ será utilizado para denotar adição
e ⊗ multiplicação.

Certas combinações de ⊕ e ⊗ sobre certos tipos de valores escalares são úteis pois
eles preservam propriedades matemáticas desejadas, como associatividade e distributivi-
dade.

Tais propriedades são extremamente úteis para construir aplicações com grafos
pois elas permitem a troca de operações sem alterações no resultado.

Algumas operações também preservam a comutatividade, porém podem existir
definições para ⊕ e ⊗ que não as preservem. Dessa forma, tais operações acarretam em
propriedades similares quando efetuadas sob matrizes e vetores.

3.2. Monoides e Semianéis

Em álgebra abstrata, monoides são conjuntos compostos por uma operação bi-
nária associativa e um elemento neutro, chamado de identidade[Chevalley 1956]. Anéis
caracterizam-se por grupos compostos por duas operações binarias ⊕ e ⊗. Considerando
a partir do conjunto R, o grupo (R, ⊕) possui uma operação associativa, comutativa, um
elemento identidade, e um aditivo inverso. O grupo (R, ⊗) é um monoide, possui a dis-
tributividade da multiplicação em respeito a adição. A tabela 1 apresenta um conjunto de
grupos e operações associadas, indicando a identidade associativa e o aniquilador multi-
plicativo.

Semianéis são generalizações de anéis que descartam o requerimento do aditivo
inverso sobre ⊕.

3.3. Elemento 0: ausência de arestas

Matrizes esparsas têm uma grande importância em GraphBLAS. Muitas imple-
mentações de matrizes esparsas reduzem o armazenamento ao não guardar os elementos

0 de uma matriz.

GraphBLAS permite o elemento 0 a ser definido pela implementação ou usuário.
Quando o elemento 0 possui certas propriedades com respeito com as operações escalares
⊕ e ⊗, então a esparsidade das operações das matrizes podem ser feitas eficientemente.
Tais propriedades são a identidade aditiva e o aniquilador multiplicativo.

3.4. Máscaras

Máscaras (“masks”) permitem a aplicação seletiva de operações a elementos es-
pecíficos de uma matriz, com base em uma condição binária. Tal seletividade se prova
particularmente útil em algoritmos de grafo e operações matriciais onde elementos de uma
matriz são condicionalmente dependentes de valores da mesma ou de critérios externos.

Elas são matrizes ou vetores binários, tipicamente das mesmas dimensões dos ele-
mentos sendo operados. São utilizadas para controlar quais elementos da matriz devem
ser atualizados durante uma operação, como exemplo típico, serve para não atualizar vér-
tices “já visitados pelo algoritmo”. Os elementos da máscara são true ou false. Ao efetuar
uma operação, apenas elementos que correspondem a true da máscara são afetados. Essa
aplicação seletiva de operações trazem ao GraphBLAS uma grande flexibilidade e efici-
ência na implementação de algoritmos.

Existem máscaras estruturais, que representam a existência de elementos não va-
zios e máscaras complementares, que representam a existência de elementos vazios.

4. Rust

Esta seção tem como base o livro The Rust Programming Language

[Klabnik and Nichols 2023], este pode ser usado como uma referência mais completa
sobre a linguagem.

Rust é uma linguagem de programação voltada a sistemas, fortemente tipada, de-
senvolvida com um foco em segurança, performance e concorrência. Possui muitos pa-
radigmas, combinando características imperativas, funcionais, orientadas a objetos e con-
correntes. Ela permite gerenciamento de memória de baixo nível, porém equipado com
garantias de segurança que previnem bugs comuns em outras linguagens.

Tais seguranças são possíveis graças a um modelo novo de gerenciamento de me-
mória, baseado em um sistema de ownership e borrowing (propriedade e empréstimo).
Esse modelo elimina a necessidade de um coletor de memória, comum em linguagens
como Java, garantindo que memórias sejam automaticamente liberadas quando não estão
mais sendo usadas. Esse modelo é reforçado através da tipagem da linguagem, juntamente
com borrowing, onde cada valor tem apenas um “dono”, e referências a valores são mu-
táveis ou imutáveis, mas não os dois simultaneamente. Essas abstrações não incorrem
nenhum custo extra em tempo de execução pois são checadas em tempo de compilação.
Tais garantias fazem Rust ser comparado com linguagens como C e C++ em termos de
performance.

O sistema de Traits permite ao Rust incorporar características como abstração e
polimorfismo comuns em códigos reutilizáveis e permite também outro tipo de polimor-
fismo: a composição, que expande o significado de polimorfismo. Um Trait especifica

um contrato que um tipo deve implementar, semelhante a interfaces em Java. Este sis-
tema tem um papel crucial na programação genérica. Rust também explora a construção
de macros na construção de código, chamado de metaprogramming que são interpretados
em tempo de compilação.

As bibliotecas associadas ao Rust, como Tokyo [Flitton and Morton 2025] e
Rayon [Hohenheim and Durante 2018] permitem um paralelismo automático no uso de
iterators, locks e outros mecanismos que simplificam as tarefas do programador, já que
este não precisa criar e manipular os threads.

5. Implementação
Este projeto realiza a implementação de uma grande porção das definições impos-

tas pela especificação 2.2.0 [Brock et al. 2021]. Não pretende-se aqui criar algoritmos em
GraphBLAS, mas sim implementar as operações do GraphBLAS em Rust.

Nesta versão tem-se apenas a implementação serial dos códigos, apesar do Rust
permitir uma paralelização automática no uso de iterators ao navegar ao longo de veto-
res, muitas paralelizações em operações de matrizes requerem algoritmos próprios que
permitam pipelines [Grama et al. 2003]. Uma vez a versão serial correta e completa será
explorada a paralelização.

As definições aqui mostradas serão apenas descrições das mesmas, e limitadas
àquelas relevantes à implementação do algoritmo de caminhos mínimos (SSSP - Single

Source Shortest Paths), afim de demonstrar a utilização da biblioteca para solucionar pro-
blemas relacionados a grafos. Para mais detalhes, a implementação inicial da biblioteca
está disponível em [Morais 2025].

A biblioteca define e implementa uma base de operadores unários, binários, mo-
noides, e semianeis. Ela incorpora também formas que permitem usuários criarem seus
próprios operadores e operações, respeitando as definições impostas pela especificação.
Todas essas definições são construídas em tempo de compilação.

É implementado uma definição de vetor, matriz e operações básicas que permitem
o usuário implementar suas próprias estruturas de vetores, que podem ser usadas para
efetuar as operações algébricas sem se importar com o tipo ou implementação do vetor
utilizada. De forma semelhante é proposta uma interface que define máscaras, de forma
que usuários são livres para trazer suas implementações de máscaras.

Buscando a facilidade de uso, a biblioteca provê também uma implementação
simples das estruturas citadas (vetor e matriz esparsa, além de máscaras), permitindo o
uso da mesma sem necessitar inicialmente de suas próprias versões.

5.1. Operações
São implementadas diversas operações algébricas que dizem respeito a vetores e

matrizes. Exemplos, para A, B e C matrizes, u, v e w vetores e 〈M〉, 〈m〉 máscaras, a
tabela 2 apresenta algumas operações implementadas na forma de métodos, entre vetores,
matrizes e combinadas.

5.2. Descritores
Descritores especificam como os outros argumentos de entrada que correspondem

a coleções (vetores, matrizes, máscaras) devem ser processados antes da operação princi-

Tabela 2. Operações do GraphBLAS

MÉTODO NOME NOTAÇÃO

mxm matriz × matriz C〈M〉 = A⊕ .⊗B

vxm vetor × matriz w〈m〉 = u⊕ .⊗ A

mxv matriz × vetor w〈m〉 = A⊕ .⊗ u

eWiseAdd
adição elemento a elemento C〈M〉 = A⊕B

conjunto de união de índices w〈m〉 = u⊕ v

eWiseMult
multiplicação elemento a elemento C〈M〉 = A⊗B

conjunto de interseção de índices w〈m〉 = u⊗ v

pal do método ser executada.

6. Algoritmos
Como aplicação será apresentado a implementação do algoritmo do caminho mí-

nimo de Bellman-Ford. No algoritmo usa-se o semi-anel da álgebra Min-Plus, o Algo-
ritmo (1) mostra o resultado.

Algoritmo 1 SSSP: Caminho Mínimo - Algébrico Bellman-Ford

Entrada: Matriz de adjacência A, vértice de origem s, #vértices n

Saída: Vetor de distância d (real)
d = [∞,∞, ...,∞]
d(s) = 0 ⊲ Distância da origem para origem
for k = 1 para n− 1 do

d = d ⊕ .⊗ A ⊲ Atualiza a distância para os vértices
end for

As Figuras (5) a (8) simulam a aplicação do algoritmo passo a passo no ciclo for,
considerando o grafo orientado de 5 vértices da figura representado na forma da matriz A

Figura 5. Algoritmo SSSP Bellman-Ford, k = 1

“Grafo G”

1 2

3

4 5

6

1

2 35

1
1

4
1

0

1
0
6

1

0
1

0
5

2

0
1
4
3

d ⊕.⊗ A = d

s = 1
n = 5
k = 1

0∞∞∞∞ 0
6
∞
2
∞

Figura 6. Algoritmo SSSP Bellman-Ford, k = 2

“Grafo G”

1 2

3

4 5

6

1

2 35

1
1

4
1

0

1
0
6

1

0
1

0
5

2

0
1
4
3

d ⊕.⊗ A = d

s = 1
n = 5
k = 2

0 6∞ 2∞ 0
6
7
2
3

Figura 7. Algoritmo SSSP Bellman-Ford, k = 3

“Grafo G”

1 2

3

4 5

6

1

2 35

1
1

4
1

0

1
0
6

1

0
1

0
5

2

0
1
4
3

d ⊕.⊗ A = d

s = 1
n = 5
k = 3

0 6 7 2 3 0
6
4
2
3

Figura 8. Algoritmo SSSP Bellman-Ford, k = 4

“Grafo G”

1 2

3

4 5

6

1

2 35

1
1

4
1

0

1
0
6

1

0
1

0
5

2

0
1
4
3

d ⊕.⊗ A = d

s = 1
n = 5
k = 4

0 6 4 2 3 0
5
4
2
3

Esse algoritmo pode ser construído utilizando construções da biblioteca em Rust,
como demonstrado na listagem 2.

Algoritmo 2 Algoritmo de SSSP utilizando construções do GraphBLAS.
fn sssp<Mt, Vc>(a: &Mt, s: IndexType, n: IndexType) -> GblasResult<Vc>

where Mt: Matrix<Scalar = f32>, Vc: VecOps<Scalar = f32, Mat = Mt> {

if a.nrows() != a.ncols() {

return Err(ApiError::DimensionMismatch.into());

}

// d = [inf, inf, ..., inf]

let idxs = (0..a.nrows()).collect::<Vec<_>>();

let vals = idxs.iter().map(|_| f32::INFINITY).collect::<Vec<_>>();

let mut d = Vc::new(a.nrows())?.build(idxs, vals, n, First::new())?;

// d(s) = 0

d.set_element(s, 0.)?;

// for k = 1 para n - 1 do

for _ in 1..n - 1 {

// d = d min.plus A

let d_dup = d.clone();

d.vxm(

Option::<Vc>::None,

Some(Minimum::new()),

MinPlusSemiring::new(),

&d_dup,

a,

None,

)?;

}

Ok(d)

}

7. Considerações Finais

Esse estudo demonstra uma inicial implementação do GraphBLAS na linguagem
de programação Rust, uma vez que a API do GraphBLAS é extensa. As operações imple-
mentadas oferecem uma base para futuras expansões de bibliotecas para processamento

de grafos. A integração com as operações algébricas oferecidas por GraphBLAS junta-
mente com o sistema de tipagem robusto de Rust e garantias de segurança fornecem um
caminho promissor para o desenvolvimento de algoritmos de processamento de grafos
escaláveis e de alta performance. A exploração dos recursos providos por Rust, como seu
modelo de ownership e genéricos, destaca seu potencial para lidar com tarefas computa-
cionais complexas concorrentes enquanto garantem segurança e eficiência.

Trabalhos futuros envolve a extensão da implementação atual com operações adi-
cionais, otimização dos cálculos da matriz esparsa de forma a permitir implantar os vários
algoritmos do GraphBLAS. Outra extensão é a exploração de implementações que façam
uso extensivo das capacidades de concorrência da linguagem. Tal feito representaria uma
grande evolução na viabilidade do uso dessa versão do GraphBLAS uma vez que parale-
lismo e concorrência são importantes nas principais aplicações do GraphBLAS e podem
ser bem aproveitados no contexto de operações da álgebra linear.

Referências

Blackford, L. S., Petitet, A., Pozo, R., Remington, K., Whaley, R. C., Demmel, J., Don-
garra, J., Duff, I., Hammarling, S., Henry, G., and others (2002). An updated set of
basic linear algebra subprograms (BLAS). ACM Transactions on Mathematical Soft-

ware, 28(2):135–151. Publisher: Citeseer.

Bondy, J. A. and Murty, U. S. R. (2008). Graph Teory. Springer.

Brock, B., Bulu, A., Mattson, T., Mcmillan, S., and Moreira, J. (2021). The GraphBLAS
C API Specification: Version 2.0.0. The Carnegie Mellon University.

Chevalley, C. (1956). Fundamental concepts of algebra. New York : Academic Press.

Community, G. The GraphBLAS. https://graphblas.org/. Publication Title: Welcome to
the GraphBLAS Forum. Accessed: 2024-08-23.

Davis, T. A. (2019). Algorithm 1000: SuiteSparse: GraphBLAS: Graph algorithms in
the language of sparse linear algebra. ACM Transactions on Mathematical Software

(TOMS), 45(4):1–25. Publisher: ACM New York, NY, USA.

Flitton, M. and Morton, C. (2025). Async Rust: Unleashing the Power of Fearless Con-

currency. O’Reilly Media, Sebastopol.

Grama, A., Gupta, A., Karypis, G., and Kumar, V. (2003). Introduction to Parallel Com-

puting. Addison-Wesley, Harlow, England ; New York.

Hohenheim, J. and Durante, D. (2018). Rust Standard Library Cookbook: Over 75 recipes

to leverage the power of Rust. Packt Publishing, Birmingham, UK.

Kepner, J., Aaltonen, P., Bader, D., Buluç, A., Franchetti, F., Gilbert, J., Hutchison,
D., Kumar, M., Lumsdaine, A., Meyerhenke, H., McMillan, S., Yang, C., Owens,
J. D., Zalewski, M., Mattson, T., and Moreira, J. (2016). Mathematical foundations
of the GraphBLAS. In 2016 IEEE High Performance Extreme Computing Conference

(HPEC), pages 1–9.

Klabnik, S. and Nichols, C. (2023). The Rust programming language. No Starch Press.

Morais, R. (2025). GraphBLAS para Rust. https://github.com/rybertm/gblas.

