GraphBLAS para Rust

Robert Morais Santos Broketa', Hamilton José Brumatto', Vania Cordeiro da Silva'

!Departamento de Ciéncia da Computagio
Universidade Estadual de Santa Cruz (UESC) — Ilhéus, BA — Brasil

rmsbroketa.cic@uesc.br, hjbrumatto@uesc.br, vania@uesc.br

Abstract. This work explores the implementation of GraphBLAS, a linear
algebra-based library for graph algorithms, using the Rust programming lan-
guage. GraphBLAS is a symbolic language that uses sparse matrix and vector
operations to efficiently represent and manipulate graphs, allowing the deve-
lopment of algorithms related to them. Rust’s strong guarantees for memory
safety, concurrency, and performance make it a candidate for building a library
like GraphBLAS. This study applies the theoretical foundations of GraphBLAS,
including its algebraic structures such as monoids and semirings, using Rust’s
typing system and programming paradigms.

Resumo. Este trabalho explora a implementacdo do GraphBLAS, uma bibli-
oteca baseada em dlgebra linear para algoritmos de grafos, na linguagem de
programagdo Rust. O GraphBLAS é uma linguagem simbdlica que utiliza ope-
ragoes com matrizes esparsas e vetores para representar e manipular grafos de
forma eficiente, permitindo o desenvolvimento de algoritmos relacionados aos
mesmos. As fortes garantias do Rust para seguranga de memdria, concorréncia
e desempenho o torna um candidato para a constru¢cdo de uma biblioteca como
o GraphBLAS. Este estudo aplica os fundamentos teéricos do GraphBLAS, in-
cluindo suas estruturas algébricas, como monoides e semianéis, utilizando o
sistema de tipagem e paradigmas de programagdo do Rust.

1. Introducao

O uso de grafos na modelagem de dados tem sido de extrema importancia pois
grafos conseguem relacionar instancias, guardando informagdes sobre as instancias bem
como sobre as relacdes. Varios estudos em teoria de grafos foram realizados e destes
decorrem importantes algoritmos [Bondy and Murty 2008]. Porém diferente de estruturas
de dados lineares, como Pilhas, Filas, Mapas e outras que possuem um grande conjunto
de bibliotecas prontas em vdrias linguagens, as linguagens de programagao nao definem
um conjunto de bibliotecas para grafos e seus algoritmos.

Isto decorre do fato de que grafos possuem uma grande flexibilidade no tratamento
de suas informacdes, pois nao ha um padrao claro de todas as informacdes que precisam
ser armazenadas e os grafos podem ser representados em diversas formas, entre elas a
matriz de adjacéncia, matriz de incidéncia e lista de adjacéncia [Bondy and Murty 2008].

Os grafos quando armazenados na forma de matriz, seja de adjacéncia ou seja
de incidéncia, podem fazer o uso de operacdes da algebra linear para implementagdo de
seus algoritmos. Desta forma, ja podemos contar com um conjunto de bibliotecas que sdo
preparadas para tratar operacdes de matrizes e vetores em algebra linear. Normalmente

esta classe de bibliotecas € denominada de BLAS (Basic Linear Algebra Subprograms).
Nela encontramos operacdes como soma de matrizes produto entre matrizes e vetores,
inversdo de matrizes, decomposicao de matrizes entre outras [Blackford et al. 2002].

Com isto surgiu a proposta de uma linguagem de implementacao de alto nivel ba-
seada em operacodes da dlgebra linear para implementar os algoritmos em grafos. Nasce
entdo o GraphBLAS [Community]. O GraphBLAS representa um conjunto de ope-
racoes da dlgebra linear que podem ser encadeadas formando um algoritmo de grafo
[Davis 2019]. Com isto comecaram a ser construidas APIs (Application Program In-
terface) para traduzir ou implementar GraphBLAS em varias linguagens, como C/C++,
MPI/C++, Java, entre outras.

Neste trabalho a proposta € dar um inicio a um projeto que venha a criar API do
GraphBLAS para a linguagem Rust. Rust € uma linguagem de programacao relativamente
nova que permite desenvolver sistemas seguros e eficientes, sem recorrer a praticas como
Coletores de Lixo (Garbage Collectors) [Klabnik and Nichols 2023].

Este trabalho estd dividido da seguinte forma, na secdo 2 sdo apresentados 0s
conceitos relacionados ao GraphBLAS e a representacdo dos grafos com base na 4dlge-
bra linear. Na secdo 3 estdo apresentadas as operacOes da dlgebra linear com vistas as
operacdes do GraphBLAS. Na secdo 4 faz-se uma apresentacao da linguagem Rust e na
secdo 5 propde-se a implementagio de elementos basicos do GraphBLAS e Algebra Li-
near na linguagem Rust e na secdo 6 uma demonstracdo de construcao de algoritmo com
esta implementagdo. Por fim, na secdo 7 ponderamos as conclusdes finais a respeito do
trabalho.

2. GraphBLAS

GraphBLAS € um conjunto padronizado de APIs para executar anélises e opera-
coes em grafos utilizando métodos baseados em matrizes. A biblioteca parte da ideia de
que matrizes esparsas podem ser usadas para representar grafos como matrizes de adja-
céncia ou de incidéncia. Dessa forma operacdes em grafos podem ser executadas como
transformacoes lineares e outras operacdes da dlgebra linear. Conceitualmente, vértices
de um grafo sdo representados por linhas e colunas de uma matriz de adjacéncia, e arestas
correspondem a valores ndo zero da mesma.

GraphBLAS se baseia no BLAS, ambos representam um conjunto de subrotinas
ou fungdes e descri¢des de estruturas ou classes que oferecem um conjunto bésico de ope-
racoes da Algebra Linear, como produto entre vetores, produto matriz-vetor, inversio de
matrizes, e outras. O objetivo do BLAS € fornecer apoio as vérias operacoes da algebra
linear, ja no GraphBLAS ¢€ fornecer apoio as varias operacdes baseadas na dlgebra linear
que permitam construir algoritmos em grafos, como exemplificado na Figura (1). As prin-
cipais aplicacOes de algoritmos com GraphBLAS se concentram em datamining e base de
dados volumosas. Desta forma, solucdes robustas, paralelas e eficientes sdo necessarias
nas implementagdes desta biblioteca.

2.1. Matrizes de Adjacéncia

Um grafo pode ser modelados na forma de Matriz de
Adjacéncia[Kepner et al. 2016]. Tal matriz geralmente quadrada, pois as linhas e

T outvertex .
Ai1234567 V Av

in-vertex

N A W=
[}
o0 0

Figura 1. Representacao de uma etapa de uma busca em largura
Fonte: The GraphBLAS community [Community]

colunas sdo o mesmo conjunto de vértices representam ligacdes entre vértices adjacentes.
Mas podem ser conjuntos disjuntos de vértices, a exemplo de grafos bipartidos.

Dada uma matriz de adjacéncia A para um grafo orientado, se A (vy,v5) = 1,
entdo existe um arco do vértice v; para o vértice vy, vide Figura (2). Observe que A (vy, vs)
ndo é equivalente a A(vq, v1), pois seriam arcos distintos. Matrizes de adjacéncia também
podem conter pesos associados aos seus arcos. Se A(vy,vs) = wyy # 0, entdo o arco de
vy para vy contém o peso wio como podemos ver representado na Figura (2).

Figura 2. Exemplo de um grafo orientado com peso nos arcos

2.2. Matriz de Incidéncia

Matrizes de incidéncia podem ser usadas para representar grafos que
possuam quaisquer das propriedades: orientados, k-partidos, multigrafos e/ou
hipergrafos[Kepner et al. 2016].

Uma matriz de incidéncia E utiliza as linhas para representar cada aresta ou arco
do grafo e as colunas representam cada vértice, o valor armazenado na matriz é o grau de
incidéncia da aresta sobre o vértice.

Em um grafo ndo orientado, podemos considerar a relagdo de incidéncia ¥(a) =
{v1,v2} representada na matriz de incidéncia com E(a,1) = 1 e E(a,2) = 1 como
indicacdo de que aresta a € uma ligacdo entre v, € v, no caso de e, que € um lago em v,
temos que E(e, 3) = 2, como podemos ver na Figura (3).

Em um hipergrafo uma aresta pode representar a ligacdo entre mais de dois vér-
tices. Da mesma forma que em um grafo comum, no hipergrafo cada vértice recebe o
grau da incidéncia da aresta ou arco sobre ele. Exemplificando, para denotar um hipe-
rarco a que possui uma ligagdo com caudas em v; € v, € cabega em v3 basta indicar que
E(a,1) = =1, E(a,2) = —1 e E(a,3) = 1, como podemos ver na Figura (4). Por outro
lado se o hipergrafo ndo € orientado, e a € uma hiperaresta entre vy, v5 € v3, cada vértice
possui o grau 1 de incidéncia a partir desta hiperaresta.

1 2 3 4
a (1 1 0 0 ’
b |1 010 a b
c |0 1 01
ot (4)
e \0 0 2 0

&
OSSP O=
d
Figura 3. Matriz de incidéncia representando um grafo nao orientado
1 2 3 G
a (-1 -1 1 b
b 1 0 -1

c \o 1 -1 a‘a

Figura 4. Matriz de incidéncia representando um hipergrafo orientado

C

3. Matrizes, Algebra Linear e GraphBLAS [Kepner et al. 2016]

Apesar da nota¢ao formal de Matrizes de transformagdo em espagos vetoriais na
Algebra Linear, no uso destas no contexto da GraphBLAS seremos menos formais.

A defini¢do candnica de matriz no contexto do GraphBLAS que possui m linhas
e n colunas de nimeros reais estd representada na Eq. (1).

A Rmxn (1)

Os indices das linhas e colunas de uma matriz A sdo, respectivamente, ¢ € [=
{1,...,m}ejeJ={1,..,n}, de forma que qualquer valor de A pode ser denotado por
A(i, j). Isto ndo estd restrito ao conjunto dos reais, de forma semelhante a matriz A pode
armazenar valores do conjunto dos complexos, nimeros inteiros € nimeros naturais.

Canonicamente indices de linhas e colunas sdo nimeros naturais /,J : N. Porém
algumas implementacdes do GraphBLAS podem apresentar indices ndo negativos I =
{0,....m—1}eJ={0,...,n — 1}.

Para GraphBLAS uma matriz € definida pela seguinte notacao em 2D:

A:IxJ—S 2)
onde indices 1,J : 7Z sdo inteiros finitos ndo negativos com m e n elementos, respecti-
vamente, e S € {R,7Z,N, ...} é um conjunto de escalares. Sem perda de generalidade

matrizes podem ser denotadas por:
A . S™" 3)

Um vetor puro € denotado por:

v=_3S" 4

Tabela 1. Grupos e Operacoes

|GRUPO | DoMINIO | & ® | ZERO | IDENTIDADE | ANIQUILADOR
Aritmética a€R + X 0 a+0=a ax0=0
dos Reais
Algebra | a€ {RU—oco} | min + o0 | min(a,00) =a | a4+ o0 =00
Min-Plus
Algebra R* max min 0 max(a,0) =a | min(a,0) =0
Max-Min
Conjunto P(Z) U N 0 aUb=a an® =10
de Partes

Um escalar € um elemento singular de um conjunto s € S e ndo possui dimensoes.

3.1. Operacoes e Propriedades Escalares

Operagdes de matrizes existentes no GraphBLAS sdo construidas a partir de ope-
racoes que chamamos de escalares. As operacdes escalares primdrias sdo adi¢do arit-
mética (1 + 1 = 2) e multiplicagdo (2 x 2 = 4). GraphBLAS também permite que
essas operagdes de adi¢do e multiplicagdo sejam definidas pelo implementador ou usué-
rio. Para evitar confusdo com as operagdes primadrias, ¢ serd utilizado para denotar adi¢ao
e ® multiplicagao.

Certas combinacOes de & e ® sobre certos tipos de valores escalares sdo tteis pois
eles preservam propriedades matemdticas desejadas, como associatividade e distributivi-
dade.

Tais propriedades sdo extremamente tteis para construir aplicacdes com grafos
pois elas permitem a troca de operacdes sem alteracdes no resultado.

Algumas operagdes também preservam a comutatividade, porém podem existir
defini¢cdes para & e ® que ndo as preservem. Dessa forma, tais operagdes acarretam em
propriedades similares quando efetuadas sob matrizes e vetores.

3.2. Monoides e Semianéis

Em dalgebra abstrata, monoides sdo conjuntos compostos por uma operacdo bi-
ndria associativa e um elemento neutro, chamado de identidade[Chevalley 1956]. Anéis
caracterizam-se por grupos compostos por duas operagdes binarias ¢ e ®. Considerando
a partir do conjunto R, o grupo (R, 6) possui uma operacao associativa, comutativa, um
elemento identidade, e um aditivo inverso. O grupo (7, ®) é um monoide, possui a dis-
tributividade da multiplicagdo em respeito a adi¢do. A tabela 1 apresenta um conjunto de
grupos e operacodes associadas, indicando a identidade associativa e o aniquilador multi-
plicativo.

Semianéis sdo generalizacOes de anéis que descartam o requerimento do aditivo
inverso sobre @.
3.3. Elemento 0: auséncia de arestas

Matrizes esparsas t€m uma grande importancia em GraphBLAS. Muitas imple-
mentacdes de matrizes esparsas reduzem o armazenamento ao ndao guardar os elementos

0 de uma matriz.

GraphBLAS permite o elemento 0 a ser definido pela implementacdo ou usudrio.
Quando o elemento 0 possui certas propriedades com respeito com as operacdes escalares
@ e ®, entdo a esparsidade das operacdes das matrizes podem ser feitas eficientemente.
Tais propriedades sdo a identidade aditiva e o aniquilador multiplicativo.

3.4. Mascaras

Mascaras (“masks”) permitem a aplicagdo seletiva de operacdes a elementos es-
pecificos de uma matriz, com base em uma condi¢ao bindria. Tal seletividade se prova
particularmente util em algoritmos de grafo e operacdes matriciais onde elementos de uma
matriz sdo condicionalmente dependentes de valores da mesma ou de critérios externos.

Elas sdo matrizes ou vetores bindrios, tipicamente das mesmas dimensdes dos ele-
mentos sendo operados. Sao utilizadas para controlar quais elementos da matriz devem
ser atualizados durante uma operacao, como exemplo tipico, serve para ndo atualizar vér-
tices “ja visitados pelo algoritmo”. Os elementos da mascara sao true ou false. Ao efetuar
uma operag¢do, apenas elementos que correspondem a true da mascara sdo afetados. Essa
aplicacdo seletiva de operacdes trazem ao GraphBLAS uma grande flexibilidade e efici-
éncia na implementacgdo de algoritmos.

Existem madscaras estruturais, que representam a existéncia de elementos nao va-
zios e mdscaras complementares, que representam a existéncia de elementos vazios.

4. Rust

Esta secdo tem como base o livto The Rust Programming Language
[Klabnik and Nichols 2023], este pode ser usado como uma referéncia mais completa
sobre a linguagem.

Rust é uma linguagem de programagao voltada a sistemas, fortemente tipada, de-
senvolvida com um foco em seguranca, performance e concorréncia. Possui muitos pa-
radigmas, combinando caracteristicas imperativas, funcionais, orientadas a objetos e con-
correntes. Ela permite gerenciamento de memdria de baixo nivel, porém equipado com
garantias de seguranca que previnem bugs comuns em outras linguagens.

Tais segurangas sdo possiveis gracas a um modelo novo de gerenciamento de me-
moria, baseado em um sistema de ownership e borrowing (propriedade e empréstimo).
Esse modelo elimina a necessidade de um coletor de memdria, comum em linguagens
como Java, garantindo que memorias sejam automaticamente liberadas quando nao estdao
mais sendo usadas. Esse modelo é reforcado através da tipagem da linguagem, juntamente
com borrowing, onde cada valor tem apenas um “dono”, e referéncias a valores sdo mu-
tdveis ou imutdveis, mas nio os dois simultaneamente. Essas abstra¢des nao incorrem
nenhum custo extra em tempo de execucao pois sdo checadas em tempo de compilacao.
Tais garantias fazem Rust ser comparado com linguagens como C e C++ em termos de
performance.

O sistema de Traits permite ao Rust incorporar caracteristicas como abstracao e
polimorfismo comuns em cddigos reutilizdveis e permite também outro tipo de polimor-
fismo: a composicdo, que expande o significado de polimorfismo. Um Trait especifica

um contrato que um tipo deve implementar, semelhante a interfaces em Java. Este sis-
tema tem um papel crucial na programacao genérica. Rust também explora a construcao
de macros na construcdo de cédigo, chamado de metaprogramming que sdo interpretados
em tempo de compilagdo.

As bibliotecas associadas ao Rust, como Tokyo [Flitton and Morton 2025] e
Rayon [Hohenheim and Durante 2018] permitem um paralelismo automatico no uso de
iterators, locks e outros mecanismos que simplificam as tarefas do programador, ja que
este ndo precisa criar e manipular os threads.

5. Implementacao

Este projeto realiza a implementacdo de uma grande porcao das defini¢des impos-
tas pela especificacao 2.2.0 [Brock et al. 2021]. Nao pretende-se aqui criar algoritmos em
GraphBLAS, mas sim implementar as operacdes do GraphBLAS em Rust.

Nesta versdo tem-se apenas a implementacdo serial dos codigos, apesar do Rust
permitir uma paraleliza¢do automadtica no uso de iterators ao navegar ao longo de veto-
res, muitas paralelizacdes em operacdes de matrizes requerem algoritmos proprios que
permitam pipelines [Grama et al. 2003]. Uma vez a versdo serial correta e completa serd
explorada a paralelizacao.

As defini¢des aqui mostradas serdo apenas descricoes das mesmas, e limitadas
aquelas relevantes a implementacao do algoritmo de caminhos minimos (SSSP - Single
Source Shortest Paths), afim de demonstrar a utilizacdo da biblioteca para solucionar pro-
blemas relacionados a grafos. Para mais detalhes, a implementagdo inicial da biblioteca
estd disponivel em [Morais 2025].

A biblioteca define e implementa uma base de operadores undrios, bindrios, mo-
noides, e semianeis. Ela incorpora também formas que permitem usudrios criarem seus
proprios operadores e operacoes, respeitando as definicdes impostas pela especificacio.
Todas essas defini¢des sdo construidas em tempo de compilagio.

E implementado uma definicdo de vetor, matriz e operacdes bésicas que permitem
o usudrio implementar suas proprias estruturas de vetores, que podem ser usadas para
efetuar as operacoes algébricas sem se importar com o tipo ou implementagdo do vetor
utilizada. De forma semelhante € proposta uma interface que define méascaras, de forma
que usudrios sdo livres para trazer suas implementagdes de méscaras.

Buscando a facilidade de uso, a biblioteca prové também uma implementacio
simples das estruturas citadas (vetor e matriz esparsa, além de mascaras), permitindo o
uso da mesma sem necessitar inicialmente de suas proprias versoes.

5.1. Operacoes

Sado implementadas diversas operagdes algébricas que dizem respeito a vetores e
matrizes. Exemplos, para A, B e C matrizes, u, v e w vetores e (M), (m) mdascaras, a
tabela 2 apresenta algumas operacdes implementadas na forma de métodos, entre vetores,
matrizes e combinadas.

5.2. Descritores

Descritores especificam como os outros argumentos de entrada que correspondem
a colecdes (vetores, matrizes, mascaras) devem ser processados antes da operacao princi-

Tabela 2. Operacoes do GraphBLAS

METODO NOME | NOTACAO |

mxm matriz X matriz CM)y=Ad.®B

vxm vetor X matriz wm)=ud.® A

mxv matriz X vetor wim)=A®.Qu

oWiserdd adlgao elementg a ele{neflto CM)=A®B
conjunto de unido de indices w(m) =udv

i seMult mul'tlphcag:a.O elemeilto a e/lerpento C(M)=A®B
conjunto de intersecdo de indices | w(m) =u ® v

pal do método ser executada.

6. Algoritmos

Como aplicagdo serd apresentado a implementagdo do algoritmo do caminho mi-
nimo de Bellman-Ford. No algoritmo usa-se o semi-anel da dlgebra Min-Plus, o Algo-
ritmo (1) mostra o resultado.

Algoritmo 1 SSSP: Caminho Minimo - Algébrico Bellman-Ford

Entrada: Matriz de adjacéncia A, vértice de origem s, #vértices n
Saida: Vetor de distincia d (real)

d = [0, 00, ..., x|
d(s)=0 > Disténcia da origem para origem
for k = 1 paran —1do

d=d ¢.®A > Atualiza a distancia para os vértices
end for

As Figuras (5) a (8) simulam a aplica¢do do algoritmo passo a passo no ciclo for,
considerando o grafo orientado de 5 vértices da figura representado na forma da matriz A

Figura 5. Algoritmo SSSP Bellman-Ford, k = 1

“Grafo G” d ®® A =d
0 [0PpdRd [076] 1211 [0

" QD ol1] [3] [6]
) ef'3 s=1 110154 B
n=>5 0[1

4 k=1 1 [0l &

Figura 6. Algoritmo SSSP Bellman-Ford, k = 2

“Grafo G” d D.® A =d
6 [0[6h2R [0[6] 21] [0]

(7) nime o
) s=1 110/514] [7

o] IE) I K 01
k=2 1] o

96

Figura 7. Algoritmo SSSP Bellman-Ford, k = 3

“Grafo G” d &® A =d
[0[6]7]12]3] [o]6] [2 0]

0 @ ol1] 13] [6]
@ s=1 1[0[5]4

p] BE) SN B 0[1
@A for HHD

1

Figura 8. Algoritmo SSSP Bellman-Ford, k = 4

“Grafo G d o© A =d

6 6423 [O6] 211 [0

(1 2) 0l 3

; s=1 1T0l514] [1

2 9~ 3 n=5 0[1

G ot ML
T

Esse algoritmo pode ser construido utilizando constru¢des da biblioteca em Rust,
como demonstrado na listagem 2.

Algoritmo 2 Algoritmo de SSSP utilizando construcdes do GraphBLAS.

fn sssp<Mt, Vc>(a: &Mt, s: IndexType, n: IndexType) —-> GblasResult<Vc>
where Mt: Matrix<Scalar = £32>, Vc: VecOps<Scalar = £32, Mat = Mt> ({
if a.nrows () != a.ncols() {
return Err (ApiError::DimensionMismatch.into());

}

// d = [inf, inf, ..., inf]

let idxs = (0..a.nrows()) .collect::<Vec<_>>();

let vals = idxs.iter().map(|_| £32::INFINITY).collect::<Vec<_>>();
let mut d = Vc::new(a.nrows())?.build(idxs, vals, n, First::new())?;
// d(s) =0

d.set_element (s, 0.)?7?;
// for k = 1 para n - 1 do
for _ in 1..n - 1 {
// d = d min.plus A
let d_dup = d.clone();
d.vxm (
Option: :<Vc>: :None,
Some (Minimum: :new ()),
MinPlusSemiring: :new(),
&d_dup,
ay
None,

7. Consideracoes Finais

Esse estudo demonstra uma inicial implementacao do GraphBLAS na linguagem
de programacgdo Rust, uma vez que a API do GraphBLAS ¢é extensa. As operacdes imple-
mentadas oferecem uma base para futuras expansdes de bibliotecas para processamento

de grafos. A integragdo com as operagdes algébricas oferecidas por GraphBLAS junta-
mente com o sistema de tipagem robusto de Rust e garantias de seguranca fornecem um
caminho promissor para o desenvolvimento de algoritmos de processamento de grafos
escaldveis e de alta performance. A exploracio dos recursos providos por Rust, como seu
modelo de ownership e genéricos, destaca seu potencial para lidar com tarefas computa-
cionais complexas concorrentes enquanto garantem seguranca e eficiéncia.

Trabalhos futuros envolve a extensdo da implementagdo atual com operacdes adi-
cionais, otimizac¢do dos cédlculos da matriz esparsa de forma a permitir implantar os varios
algoritmos do GraphBLAS. Outra extensdo € a exploracdo de implementacdes que facam
uso extensivo das capacidades de concorréncia da linguagem. Tal feito representaria uma
grande evolucdo na viabilidade do uso dessa versdo do GraphBLAS uma vez que parale-
lismo e concorréncia sdo importantes nas principais aplicacdes do GraphBLAS e podem
ser bem aproveitados no contexto de operagdes da dlgebra linear.

Referéncias

Blackford, L. S., Petitet, A., Pozo, R., Remington, K., Whaley, R. C., Demmel, J., Don-
garra, J., Duff, I., Hammarling, S., Henry, G., and others (2002). An updated set of
basic linear algebra subprograms (BLAS). ACM Transactions on Mathematical Soft-
ware, 28(2):135—-151. Publisher: Citeseer.

Bondy, J. A. and Murty, U. S. R. (2008). Graph Teory. Springer.

Brock, B., Bulu, A., Mattson, T., Mcmillan, S., and Moreira, J. (2021). The GraphBLAS
C API Specification: Version 2.0.0. The Carnegie Mellon University.

Chevalley, C. (1956). Fundamental concepts of algebra. New York : Academic Press.

Community, G. The GraphBLAS. https://graphblas.org/. Publication Title: Welcome to
the GraphBLAS Forum. Accessed: 2024-08-23.

Davis, T. A. (2019). Algorithm 1000: SuiteSparse: GraphBLAS: Graph algorithms in
the language of sparse linear algebra. ACM Transactions on Mathematical Software
(TOMS), 45(4):1-25. Publisher: ACM New York, NY, USA.

Flitton, M. and Morton, C. (2025). Async Rust: Unleashing the Power of Fearless Con-
currency. O’Reilly Media, Sebastopol.

Grama, A., Gupta, A., Karypis, G., and Kumar, V. (2003). Introduction to Parallel Com-
puting. Addison-Wesley, Harlow, England ; New York.

Hohenheim, J. and Durante, D. (2018). Rust Standard Library Cookbook: Over 75 recipes
to leverage the power of Rust. Packt Publishing, Birmingham, UK.

Kepner, J., Aaltonen, P., Bader, D., Bulug, A., Franchetti, F., Gilbert, J., Hutchison,
D., Kumar, M., Lumsdaine, A., Meyerhenke, H., McMillan, S., Yang, C., Owens,
J. D., Zalewski, M., Mattson, T., and Moreira, J. (2016). Mathematical foundations
of the GraphBLAS. In 2016 IEEE High Performance Extreme Computing Conference
(HPEC), pages 1-9.

Klabnik, S. and Nichols, C. (2023). The Rust programming language. No Starch Press.
Morais, R. (2025). GraphBLAS para Rust. https://github.com/rybertm/gblas.

