Um Ambiente integrado a Qiskit para Execucao Remota
de Algoritmos Quanticos em GPU

Maria Eduarda Mascarenhas da Silva!, Helena Carvalho Leal?,
Calebe Micael de Oliveira Conceicio', Rodolfo Botto de Barros Garcia'

'Departamento de Computagio — Universidade Federal de Sergipe (UFS)
—49.100-000 — Sao Cristovao-SE, Brasil

?Departamento de Fisica — Universidade Federal de Sergipe (UFS)
—49.100-000 — Sao Cristovao-SE, Brasil

{dudxyz, helena_leall9}@academico.ufs.br,

{calebe, rodolfo.botto}@dcomp.ufs.br

Abstract. This paper presents an environment integrated with Qiskit for the re-
mote execution of quantum algorithms using GPUs, aiming to overcome the per-
formance limitations of local hardware. The solution enables dynamic resource
allocation and the efficient parallelization of quantum operations, thereby de-
mocratizing large-scale simulations. For validation, a system was developed
combining a Qiskit-integrated API with GPUs for the computation of quantum
matrices and vectors. Experimental results demonstrate significant performance
gains over exclusively CPU-based approaches, which helps to advance research
in quantum computing. Therefore, the environment facilitates the development,
testing, and validation of algorithms for the scientific community.

Resumo. Este artigo apresenta um ambiente integrado ao Qiskit para execucdo
remota de algoritmos qudnticos utilizando GPUs, visando superar limitagoes
de desempenho em hardware local. A solugcdo permite alocag¢do dindmica
de recursos e paralelizacdo eficiente de operacdes quanticas, democratizando
simulagoes de grande escala. Para validacdo, foi desenvolvido um sistema com-
binando API integrada ao Qiskit com GPUs para cdlculo de matrizes e vetores
quanticos. Resultados experimentais demonstram ganhos significativos de per-
formance frente a abordagens baseadas exclusivamente em CPUs, o que im-
pulsiona pesquisas em computacdo qudntica. Portanto, o ambiente facilita o
desenvolvimento, teste e validacdo de algoritmos para a comunidade cientifica.

1. Introducao

A computagdo quantica tem sido apontada como a préxima revolugio tecnoldgica, prome-
tendo avangos significativos em dreas como otimizacao, inteligéncia artificial, simulagdes
quimicas e seguranga cibernética [Preskill 2018]. Diferente dos computadores comuns, 0s
computadores quanticos exploram principios fundamentais da mecéanica quantica, como
a superposicao e o emaranhamento, permitindo representar e processar informagdes e da-
dos de maneira mais eficiente. Grandes empresas como IBM, Google e Microsoft, assim
como governos ao redor do mundo, t€m investido em massa nessa tecnologia emergente.
Segundo a McKinsey (2024), a computacio quantica devera gerar cerca de US$1,3 trilhdo
em valor econdmico até 2035 [Company 2024].

Apesar de seu potencial transformador, essa tecnologia ainda enfrenta desafios
significativos. Entre eles, destacam-se as limitagdes fisicas dos dispositivos, a necessidade
de correcdo de erros e a dificuldade de acesso a hardware quantico em larga escala. Por
esse motivo, o uso generalizado de computadores quanticos ainda ndo € uma realidade, e
pesquisadores e desenvolvedores recorrem amplamente a simulagdes quanticas realizadas
em computadores cldssicos. Diversos grupos de pesquisa tém explorado solucdes alter-
nativas para otimizar simulagdes quanticas, como o uso de clusters de alto desempenho,
arquiteturas hibridas CPU-GPU e plataformas de computagcdo em nuvem especializadas
[Sarode 2024]. Cada abordagem apresenta vantagens e limitag¢des, relacionadas tanto ao
desempenho quanto a escalabilidade e ao custo operacional.

Nesse contexto, ferramentas como Qiskit - um framework de c6digo aberto desen-
volvido pela IBM - tém desempenhado papel central ao permitir a simulacdo e desenvol-
vimento de algoritmos quanticos em ambientes cldssicos. No entanto, a execucao dessas
simulacdes demanda grande poder computacional, especialmente para circuitos quanticos
de escala maior, o que limita a experimentacdo e o avango da pesquisa. Para contor-
nar restricdes computacionais em diversas dreas cientificas, tem-se utilizado unidades
de processamento grafico (GPUs), conhecidas pela sua alta capacidade de paraleliza¢ao
[Schmidt and Hildebrandt 2024].

Diante desse cendrio, este trabalho propde o desenvolvimento e validagdo de um
ambiente hibrido que integra o framework Qiskit com recursos de computagdo paralela
baseados em GPU, para execu¢do remota da simula¢do de algoritmos quanticos. O de-
senvolvimento inclui o desenvolvimento de uma API RESTful para gerenciar a criagao,
0 armazenamento e a inspecdo de objetos Qobj, permitindo que usudrios submetam cir-
cuitos quanticos em formato JSON e recebam resultados diretamente em seus ambientes
Qiskit. A proposta busca superar os gargalos computacionais que limitam a simulagdo
de circuitos quanticos em hardware local, especialmente quando se lida com um nimero
elevado de qubits e operacdes unitirias complexas.

Futuramente, o ambiente aqui proposto ird compor uma infraestrutura de
computacdo de alto desempenho capaz de escalar dinamicamente problemas em
simulagdes quanticas, conforme a demanda. Ao combinar elementos da computacdo
quantica com técnicas consolidadas de computacido de alto desempenho, este trabalho
busca democratizar o acesso remoto desses recursos.

O restante deste artigo estd organizado da seguinte forma: na Secao 2 descrevem-
se os trabalhos relacionados presentes na literatura; na Se¢ao 3, realiza-se uma revisao
dos fundamentos da Qiskit e do processamento em GPU baseado em CUDA; a Secao
4 detalha a metodologia, cuja abordagem € hibrida, combinando computacio clédssica
acelerada por GPU (via CUDA) e simulacao de circuitos quanticos (via Qiskit), integrados
por uma camada de comunicag¢do utilizando o formato JSON; na Secao 5, apresentamos
resultados promissores do célculo A - ¥ (onde A € a matriz e T o vetor); por fim, na Secao
6, concluimos o projeto com a maior parte dos resultados satisfatorios desta pesquisa que
estd em estdgio inicial.

2. Trabalhos Relacionados

A otimizagdo de simulacdes quinticas em hardware cldssico é um campo de pesquisa
ativo. O estudo de [Sarode 2024] apresenta uma andlise comparativa de simulagdo em

GPU, contrastando a particao de circuitos (usando CutQC) com a execucdo completa
(usando Qiskit-Aer-GPU). Conclui-se que a parti¢do reduz o consumo de memoria, sendo
vantajosa em cendrios com recursos limitados, enquanto a simulagdo completa oferece
maior desempenho em sistemas com GPUs abundantes, evitando o custo exponencial do
pos-processamento de multiplos subcircuitos.

No contexto de hardware, o trabalho de [Schieffer et al. 2024] investiga o im-
pacto da memoria unificada do superchip Grace Hopper em aplicacdes de HPC, incluindo
simulagdes no Qiskit. O estudo demonstra que o desempenho da memodria integrada
CPU-GPU ¢ fortemente influenciado pelo padriao de inicializacdo e acesso aos dados,
oferecendo diretrizes para otimizacdo em arquiteturas hibridas relevantes para a nossa
proposta.

A arquitetura aqui proposta, que explora a representacdo padronizada Qobj em
JSON para fragmentar e distribuir cargas de trabalho quanticas, espelha conceitualmente
o teorema de repeti¢do paralela de Raz [Raz 1998], o qual demonstra que a repeticao si-
multanea de um protocolo reduz a probabilidade de erro de modo exponencial. Neste
trabalho, cada Qobj € particionado em subexperimentos independentes — analogo as “ro-
dadas” paralelas do teorema — e encaminhado a um médulo de aceleragio CUDA/GPU
capaz de processar vetores e matrizes unitdrias em larga escala. Essa combinagdo nao
sO possibilita ganhos de performance ao explorar o paralelismo massivo da GPU, mas
também oferece um banco de experimentos reproduziveis que pode ser utilizado para
medir, de forma empirica, a queda na taxa de falhas das simulacdes quanticas conforme
aumentamos o nimero de repeti¢cdes paralelas.

3. Fundamentacao Teérica

A fundamentacio tedrica deste trabalho apresenta os conceitos basicos do Qiskit e do
processamento em GPU baseado em CUDA.

3.1. Qiskit

Qiskit (Quantum Information Science Kit) é um SDK (Software Development Kit) de
codigo aberto para trabalhar com computadores quanticos em nivel de circuitos, pulsos
e algoritmos. Desenvolvido pela IBM, o Qiskit foi projetado para permitir a construgao,
simulacao e execucdo de programas quanticos de forma mais acessivel. Ele atua como
uma interface fundamental entre os algoritmos quanticos abstratos e a execugao pratica,
seja em simuladores quanticos cldssicos de alto desempenho ou diretamente em hardware
quantico real, incluindo os processadores quanticos da IBM Quantum.

No campo da computacdo quantica, o Qiskit trabalha com conceitos de
superposicdo, a qual permite que um sistema com n qubits processe simultaneamente
todos os 2" estados em uma tnica operacdo, o que explora o paralelismo quantico ine-
rente. Isso possibilita a execucdo da simulagdo de algoritmos que, quando executados em
computadores quanticos, podem superar exponencialmente a eficiéncia dos algoritmos
classicos em certas tarefas, como fatoracao de numeros (algoritmo de Shor) e busca em
bases de dados nao estruturadas(Algoritmo de Grover).

A arquitetura do Qiskit é composta por vérias camadas que cobrem diferentes
aspectos do desenvolvimento quantico. O Qiskit Terra € a base que fornece as ferramen-
tas fundamentais para a criagdo e manipulacao de circuitos quanticos, gerenciamento de

portas quanticas, medi¢cdes e registros cldssicos. Complementando isso, simulador Aer
do Qiskit, desenvolvido pela IBM, foi utilizado para as execugdes locais dos circuitos e
oferece simuladores otimizados para testar e depurar programas quanticos em maquinas
classicas antes de envid-los para o hardware [IBM 2023]. Além dessas funcionalidades
essenciais, o ecossistema Qiskit inclui bibliotecas para algoritmos quanticos avancados,
como otimizag¢do, quimica quantica e aprendizado de maquina quantico. Ademais, o SDK
disponibiliza ferramentas para caracterizagcdo de ruido e mitigagcdo de erros.

3.1.1. Qobj

O Quantum Object (Qobj) € uma estrutura de dados que representa um pacote completo
de informacdes necessdrias para a execu¢ao de um experimento quantico em um simu-
lador ou em um backend real. Trata-se de um objeto serializavel em formato JSON que
descreve, entre outros elementos, o circuito quantico a ser executado, o backend de des-
tino e as instrugdes de execucdo. Sua estrutura é composta por trés elementos principais:
um Qobj header, que contém informacdes gerais como nome do job, backend e versao;
uma lista de experimentos, que inclui os circuitos ou schedules a serem executados; e um
conjunto de parametros globais de configuracdo, como o nimero de shots e a seed para
controle de aleatoriedade em simulacdes.

3.2. CUDA

CUDA (Compute Unified Device Architecture) ¢ um modelo de programacao paralela de-
senvolvido pela NVIDIA que permite a utilizacdo de unidades de processamento grafico
(GPUs) para computacdo de proposito geral (GPGPU).

A hierarquia de memoria € um fator critico para o desempenho em CUDA. Para
a aceleracao, foi utilizada a arquitetura CUDA da NVIDIA, que permite computacdo de
propésito geral em GPUs. O desempenho em CUDA € sensivel a hierarquia de memoria,
sendo crucial o uso de registradores rapidos e memoria compartilhada para a comunicagdo
entre threads, enquanto a memoria global, de maior laténcia, € usada para dados massivos.

No contexto deste trabalho, CUDA € especialmente eficiente para:

1. Operacoes Tensoriais: cdlculo paralelo de amplitudes de estado, por exemplo,

‘w/> =Ur® Infk‘w%

onde portas quanticas sao aplicadas como produtos tensoriais paralelizaveis.

2. Paralelismo de Portas: execucdo concorrente de portas independentes via
multiplas streams CUDA.

3. Manipulacao de Estados: atualizacio paralela de vetores de estado com 2" com-
ponentes, proporcionando speedup aproximado dado por:

#el t
Speedup-O(elementos)

CUDA cores

4. Metodologia

O projeto a que este trabalho esta incluido tem como etapas: (i) projetar uma API RESTful
que possibilite a comunicacao entre o Qiskit e uma infraestrutura baseada em CUDA; (i)

implementar algoritmos de simulacao de circuitos quanticos otimizados para execucao pa-
ralela em GPU ao realizar calculos de matrizes e vetores relacionados a circuitos quanticos
de forma mais eficiente.; (iii) avaliar experimentalmente os ganhos de desempenho obti-
dos com a paralelizacdo em comparacdo com abordagens puramente baseadas em CPU;
e (iv) propor uma arquitetura escaldvel e replicavel que possa ser utilizada por pesquisa-
dores e institui¢des com recursos computacionais limitados.

Assim, a arquitetura proposta neste trabalho, e que corresponde ao estagio inicial
do projeto, cumpre as trés primeiras etapas e estabelece um fluxo coeso a ser detalhado
nas subsecoes desta metodologia: em Sec¢ao 4.1 detalha a abstragdo via API; a Secao 4.2
explica como a aceleracao via CUDA realiza operacdes lineares complexas delegadas a
GPU e, por fim, a Secao 4.3 projeta a orquestracdo Python, como a ponte que integra o
Qiskit, a serializagao e CUDA.

4.1. Design da API integrada ao Qiskit

A API foi implementada como um servico RESTful em Python, utilizando o framework
Flask para modularizar a comunicagdo entre o cliente e os componentes internos do sis-
tema. Sua funcdo principal € automatizar a criagdo, armazenamento e consulta de objetos
Qiskit do tipo “Qobj” em um servidor local. Embora todos os mddulos estejam hospe-
dados na mesma maquina, a utilizacdo do Flask permite uma separacdo légica entre as
etapas do pipeline, facilitando a organizacdo do cddigo e futuras extensdes para arqui-
teturas distribuidas. O ambiente Python foi configurado com Qiskit Aer (simulador de
alto desempenho), Flask e bibliotecas padrao de manipulagdo e serializacdo de arquivos,
como pickle e os.

O fluxo apresentado na Figura 1 descreve a interagdo entre os principais com-
ponentes da arquitetura: o servidor Flask, o mddulo intermediario ponte.py e o niicleo
de execucao em GPU (cuda_exec). Inicialmente, ponte.py envia uma requisicdo GET
ao servidor Flask (/readqobj) para obter um objeto quantico (Qobj) em formato JSON,
previamente armazenado. Apoés receber esse JSON, ponte.py o converte em um objeto
QuantumCircuit e extrai a matriz do operador e o vetor de estado associados, que sdo se-
rializados em arquivos bindrios (matrix.bin e vector.bin). Em seguida, esses arquivos sao
passados como entrada para o executavel CUDA (cuda_exec), responsavel por realizar o
calculo em GPU. O resultado, salvo em result.bin, € entio lido e convertido novamente
para JSON por ponte.py. Por fim, esse resultado é enviado de volta ao servidor Flask por
meio de uma requisi¢do POST (/result). O servidor responde com um status HTTP 200,
confirmando o recebimento e o encerramento do fluxo.

Os efeitos praticos da implementacao desse fluxo de infraestrutura cliente-
servidor, bem como seu desempenho e limitacdes observadas durante a execucdo de
simulagdes, serdo devidamente analisados e discutidos na Sec¢do de Resultados. Essa
avaliagdo visa fornecer uma compreensdo critica sobre a eficiéncia da arquitetura pro-
posta e seu potencial de aplicacdo em cendrios reais de simulagdo quantica.

4.2. Processamento Paralelo em GPU com CUDA

O nucleo da aceleragdo computacional é um kernel desenvolvido em CUDA, encapsu-
lado no arquivo cuda_exec. cu, cuja responsabilidade € executar a operagcdo de pro-
duto matriz-vetor com nimeros complexos. Essa operagdo € central para a simulacao de

Fluxo do Servigo: Flask <> ponte.py < CUDA

Servidor Flask ponte.py cuda_exec

GET /readqobj?namePath=<qobj>

Qobj JSON

JSON — QuantumCircuit

—

Extrai Operador e Vetor de Estado

U

Salva matrix.bin / vector.bin

./cuda_exec <dimens&o>

v

result.bin
e
Lé result.bin — JSON
POST /result JSON
200 OK
.. >
Servidor Flask ponte.py cuda_exec

Figura 1. Diagrama de sequéncia do fluxo da arquitetura integrada ao Qiskit.

estados quanticos, pois aplica a matriz unitdria, que representa o circuito quantico, so-
bre o vetor de estado do sistema. O processo inicia-se com a aloca¢do de memoria no
hospedeiro (host) para a matriz (h.-matrix), o vetor de entrada (h_-vector) e o vetor
de resultado (h_result). Em seguida, os dados sdo carregados a partir dos arquivos
bindriosmatrix.bin e vector.bin, que armazenam as informacdes no formato na-
tivo cuFloatComplex.

Com os dados preparados no host, a etapa seguinte consiste na transferéncia
para a memoria do dispositivo de processamento (GPU). A API do CUDA ¢ utili-
zada para alocar memoria na GPU com cudaMalloc e para copiar os dados com
cudaMemcpyHostToDevice. Uma vez que a matriz e o vetor residem na memoria da
GPU, o kernel € invocado. A grade de threads (gridSize) é dimensionada para cobrir
todas as linhas da matriz, permitindo que cada thread calcule, em paralelo, um tnico ele-
mento do vetor de resultado. Conforme o trecho de c6digo a seguir, cada thread computa
o produto escalar entre a sua linha correspondente na matriz e o vetor de estado.

cuFloatComplex sum = make_cuFloatComplex (0,0);
for (int 7 = 0; J < cols; Jj++)

sum = cuCaddf (sum, cuCmulf (matrix[rowxcols + J], vector[]j]));
result [row] = sum;

Finalizada a execucao do kernel, os resultados sdo transferidos de volta para o host
com a fun¢cdo cudaMemcpyDeviceToHost, salvos no arquivo result.bin e, por

fim, toda a memoria alocada em ambos os dispositivos € liberada para evitar vazamentos
de recursos.

4.3. Ponte de Integracao entre Qiskit e o Nucleo de Aceleracao CUDA

A interface entre o ecossistema Qiskit e o moddulo de aceleracio baseado em
GPU (CUDA) ¢ realizada pelo script Python ponte.py, que funciona como ca-
mada de abstracdo e orquestracdo. Esse componente recebe requisicdes REST
no endpoint /readgobj do servico Flask, obtém o Qobj em JSON e o
converte em um objeto QuantumCircuit. Em seguida, extrai a matriz
unitiria do operador via Operator (circ).data e o vetor de estado com
Statevector.from instruction(circ) .data. Ambos os arrays sdo se-
rializados em formato np.complex64 e gravados em dois arquivos bindrios —
matrix.bine vector.bin — como pré-requisito para a execu¢ao em GPU.

O “nicleo CUDA” propriamente dito € um executavel compilado em C++/CUDA
(cuda_exec) que realiza a multiplicacdo de matrizes e vetores de forma massiva-
mente paralela na GPU. Ele é invocado por ponte.py via subprocess, rece-
bendo a dimensdo do sistema (2") como argumento de linha de comando e carre-
gando matrix.bin e vector.bin diretamente na memoria de dispositivo. Apos
a computagdo, produz um arquivo de saida result .bin, contendo o vetor resultante
também em np.complex64.

ponte.py entdo 1€ result.bin, converte os dados de volta para estruturas
Python (dicionario/JSON) e envia o resultado ao Flask por meio de uma requisi¢ao POST
ao endpoint /result, encerrando o ciclo de processamento.

Ao empregar CUDA, o sistema explora a arquitetura SIMT (Single Instruction,
Multiple Threads) das GPUs, dividindo cada operacido de multiplicagdo em milhares de
threads que trabalham em paralelo. Essa abordagem nao s6 reduz drasticamente o tempo
de execugdo para grandes dimensdes de circuito (por exemplo, matrizes 1000 x 1000),
mas também demonstra a relevancia do nicleo CUDA como componente critico para
viabilizar simula¢des quanticas em larga escala. Future works incluirdo otimiza¢des de
gerenciamento de memoria GPU e balanceamento de carga para maximizar ainda mais o
desempenho e reduzir a laténcia do pipeline.

5. Resultados e Discussao

O projeto apresenta resultados experimentais, embora ainda em fase inicial, com testes
focados em circuitos quanticos simples enviados via qobj para o CUDA, que multiplicou
matrizes unitarias de baixa dimensao e vetores de estado reduzidos. Com isso, avaliando
o potencial de aceleracdo, foi implementado um testbench.

Seguindo o fluxo de arquitetura descrito na Figura 1, um cliente envia uma
requisicdo POST para /generateqobj, o servigo 1€ um payload JSON contendo: (1) o
numero de qubits, (2) uma lista ordenada de defini¢des de portas (cada uma especificando
o tipo e os qubits-alvo) e (3) um prefixo de nome de arquivo opcional. Internamente, é
instanciado um QuantumCircuit com o tamanho de registrador solicitado, itera-se sobre
cada instru¢do de porta (por exemplo, Hadamard ou CNOT) para aplica-la, e entdo o cir-
cuito € transpilado para o backend gasm_simulator do Aer. O Qobj resultante € serializado
via pickle e gravado em disco como «<namePath>.qgob]j.

Para permitir que clientes inspecionem os objetos salvos, implementou-se um end-
point GET em /readqobj. Dado um parametro de consulta namePath, o servico carrega o
arquivo pickle e determina dinamicamente se ele contém um Qobj (com .config, .header
e .experiments) ou um QuantumCircuit bruto. No caso de um Qobj, metadados, como
nome e versao do backend, nimero de shots, tamanhos de registradores, configuracdes de
medicao e sequéncias de instrugdes detalhadas por experimento, sdo extraidos acessando
os atributos com verificagdes de existéncia. Se o arquivo contiver apenas um circuito, ex-
traimos o numero de qubits e os dados de instru¢do diretamente do atributo .data do cir-
cuito. Por fim, o endpoint retorna um objeto JSON estruturado contendo qobj_data, header
e uma lista de experiments, cada um com sua propria configuracdo e lista de instrugdes.

Para permitir a integracdo direta com a interface padrao de execucao de circui-
tos do Qiskit, desenvolveu-se um conjunto de componentes adicionais que seguem as
abstracoes exigidas pela arquitetura modular do framework. A seguir, detalhamos a
implementagdo desses elementos:

* Provider: Implementou-se um provider customizado do Qiskit que encaminha a
execucdo de circuitos para o servico RESTful criado anteriormente. Para isso,
estendeu-se as classes base BackendV1 e JobV1 do Qiskit, além de criar um Pro-
vider que registra o nosso backend.

* Design do Backend: A classe WebserviceBackend herda de BackendV1 e recebe,
no construtor, a URL do servigo Flask (http://127.0.0.1:5000). No método run(),
aceita-se um unico QuantumCircuit por vez, € extraido seu nimero de qubits e as
instrucdes — mapeando portas H e CX para um JSON compativel com o endpoint
/generateqobj — e fazemos o POST para gerar e salvar o Qobj no servidor. Caso
o servidor responda com erro, uma exce¢ao € lancada para interromper o fluxo.

* Gerenciamento de Jobs: A classe WebserviceJob armazena o job_id, o backend e
o circuito de entrada. Seu estado inicial ¢ RUNNING. Ao chamar result(), fazemos
um GET em /readqobj para recuperar o arquivo .qobj serializado, extraimos o
JSON de metadados e construimos um objeto Result do Qiskit com um resultado
simulado (contagens de exemplo e sucesso). Apds obter o resultado, atualizamos
o status para DONE e retornamos o Result para o cliente.

* Registro de Backend: Em WebserviceProvider, estendemos Provider para instan-
ciar um QasmBackendConfiguration que descreve nosso backend (nome, versao,
numero de qubits, gates suportadas, etc.). O método backends() permite listar to-
dos os backends registrados ou filtrar por nome, integrando-se ao fluxo padrao de
selecao do Qiskit.

Os resultados obtidos demonstram que a arquitetura proposta consegue reproduzir,
com fidelidade e flexibilidade, o ciclo completo de construcdo, serializacao e recuperagao
de circuitos quanticos, integrando-se de forma transparente a interface do Qiskit. A
criacdo de uma camada RESTful entre o cliente e o backend facilita o desacoplamento
entre a légica de constru¢do dos circuitos e o ambiente de execucao, permitindo futuras
extensoes para execucao remota. Esses aspectos indicam caminhos promissores para tra-
balho futuro, como o suporte a multiplas instru¢cdes nativas e a adaptagcdo do servigo para
backends reais de clusters personalizados.

Na Figura 2, pode-se observar o ambiente de teste para uma matriz de dimensao
4 x 4. Como esperado para um sistema de pequena escala, os resultados ndo indicaram
speedup em relacdo a execugdo na CPU.

Essa falta de aceleracdo ocorre porque, em matrizes pequenas, o overhead associ-
ado a transferéncia de dados para a memoria da GPU e a inicializa¢do do processamento
paralelo domina o tempo total de execu¢do. O verdadeiro ganho de desempenho com
CUDA s6 se manifesta em problemas de grande porte, onde a capacidade de paralelizacao
massiva da GPU é plenamente explorada.

Para ilustrar esse ponto, a Tabela 2 retine os resultados de um cédigo genérico de
multiplicacdo de matrizes em duas escalas distintas:

* Matrizes 3 x 3: O speedup é desprezivel (= 0,002x, conforme Tabela 2), pois
a CPU ¢ mais eficiente para uma carga de trabalho tao baixa, evitando o custo do
overhead.

* Matrizes 1000 x 1000: O speedup torna-se claro e significativo (= 130X, con-
forme Tabela 2), uma vez que o processamento paralelo de milhdes de operagdes
na GPU supera em muito o tempo de inicializagao.

Tabela 1. Comparative Performance between GPU (CUDA) and CPU in Matrix
Multiplication

Dimension GPU Time (ms) CPU Time (ms) Speedup (%)

3x3 1.992 0.004288 0.00215
1000 x 1000 17.203 2235.564 129.95

Source: Developed by the authors

Tabela 2. Desempenho comparativo entre GPU (CUDA) e CPU na multiplicacao
de matrizes

Dimensao Tempo GPU (ms) Tempo CPU (ms) Speedup (x)

3x3 1,992 0,004288 0,00215
1000 x 1000 17,203 2.235,564 129,95

Fonte: Elaborado pelos autores

oooooo tos\IC_MariaEduardaMascarenhasdaSilva\QC_FPGA\TASK3TASKU\ponte_integracao> python

o be
‘empo CPU: 0.000000 segundos
mj PU (kernel): ©.536576 ms

Figura 2. Benchmark da multiplicacao de uma matriz por vetor complexo (di-
mensao 4 x 4).

Portanto, embora o benchmark atual ndo mostre aceleracdo para pequenas di-
mensodes, ele valida a implementagdo. Os resultados apresentados na Tabela 2 mostram
que, a medida que a escala do problema cresce, a paralelizacdo em GPU passa a ofere-
cer ganhos de desempenho substanciais. Assim, ao avancar para a simulacao de sistemas
quanticos maiores, 0 projeto consiga explorar o potencial da GPU para obter ganhos de
desempenho expressivos.

6. Conclusao Parcial e Perspectivas Futuras

Este trabalho demonstrou a viabilidade de uma arquitetura cldssico-quantica hibrida,
construindo um backend local integrado ao Qiskit. A API RESTful em Python com
Flask automatizou a gestdo de objetos Qob j, e um Provider/Backend customiza-
dos viabilizaram o encaminhamento de circuitos.

Um pilar foi a otimizacdo de operacOes quanticas via GPU. Com CUDA e
cuComplex, desenvolveu-se um sistema para multiplicagdo de matriz por vetor. Os
resultados experimentais sao um teste inicial, demonstrando a capacidade de aceleracao
da GPU para certas operagdes. Embora preliminares, os dados sd@o promissores: a GPU
superou a CPU em larga escala, com um speedup de aproximadamente 130x para matrizes
1000x1000, reforcando o potencial da computacao paralela em simulagdes quanticas.

Futuramente, a pesquisa expandird o sistema, implementando o produto de Kro-
necker (C' = A ® B) em CUDA. Serio realizados testes mais robustos para uma avaliagao
completa. No entanto, em seu estagio inicial, ndo € possivel comprovar todas as potenci-
alidades, pois o trabalho e sua base experimental serdo expandidos. O objetivo € conso-
lidar a arquitetura, robustecendo a integracdo Qi skit/GPU, para criar um ambiente de
simulacao remoto, rapido e confidvel.

Atualmente, o foco € a integracdo Qiskit com o médulo GPGPU. O servidor de
simulacao proposto incluird enfileiramento de prioridade, agendamento de jobs, despacho
inteligente e drivers para hardware especializado. Este trabalho integra um projeto maior,
onde a infraestrutura serd expandida para abarcar toda a cadeia de processamento — do
recebimento de Qobjs via WebServices a execu¢do em variadas arquiteturas de aceleracao
— consolidando a arquitetura de um backend independente.

Referéncias
Company, M. . (2024). What is quantum computing? McKinsey.com.

IBM (2023). Qiskit: An open-source framework for quantum computing. https://
giskit.org.

Preskill, J. (2018). Quantum Computing in the NISQ era and beyond. Quantum, 2:79.

Raz, R. (1998). A parallel repetition theorem. SIAM Journal on Computing, 27(3):763—
803.

Sarode, K. (2024). Circuit partitioning and full circuit execution: A comparative study
of gpu-based quantum circuit simulation. Cited by: 0; All Open Access, Green Open
Access.

Schieffer, G., Wahlgren, J., Ren, J., Faj, J., and Peng, 1. (2024). Harnessing integrated
cpu-gpu system memory for hpc: A first look into grace hopper. Cited by: 3; All Open
Access, Green Open Access, Hybrid Gold Open Access.

Schmidt, B. and Hildebrandt, A. (2024). From gpus to ai and quantum: three waves of
acceleration in bioinformatics. Drug Discovery Today, 29(6):103990.

