
Um Ambiente integrado à Qiskit para Execução Remota
de Algoritmos Quânticos em GPU

Maria Eduarda Mascarenhas da Silva1, Helena Carvalho Leal2,
Calebe Micael de Oliveira Conceição1, Rodolfo Botto de Barros Garcia1

1Departamento de Computação – Universidade Federal de Sergipe (UFS)
– 49.100-000 – São Cristóvão-SE, Brasil

2Departamento de Fı́sica – Universidade Federal de Sergipe (UFS)
– 49.100-000 – São Cristóvão-SE, Brasil

{dudxyz, helena leal19}@academico.ufs.br,

{calebe,rodolfo.botto}@dcomp.ufs.br

Abstract. This paper presents an environment integrated with Qiskit for the re-
mote execution of quantum algorithms using GPUs, aiming to overcome the per-
formance limitations of local hardware. The solution enables dynamic resource
allocation and the efficient parallelization of quantum operations, thereby de-
mocratizing large-scale simulations. For validation, a system was developed
combining a Qiskit-integrated API with GPUs for the computation of quantum
matrices and vectors. Experimental results demonstrate significant performance
gains over exclusively CPU-based approaches, which helps to advance research
in quantum computing. Therefore, the environment facilitates the development,
testing, and validation of algorithms for the scientific community.

Resumo. Este artigo apresenta um ambiente integrado ao Qiskit para execução
remota de algoritmos quânticos utilizando GPUs, visando superar limitações
de desempenho em hardware local. A solução permite alocação dinâmica
de recursos e paralelização eficiente de operações quânticas, democratizando
simulações de grande escala. Para validação, foi desenvolvido um sistema com-
binando API integrada ao Qiskit com GPUs para cálculo de matrizes e vetores
quânticos. Resultados experimentais demonstram ganhos significativos de per-
formance frente a abordagens baseadas exclusivamente em CPUs, o que im-
pulsiona pesquisas em computação quântica. Portanto, o ambiente facilita o
desenvolvimento, teste e validação de algoritmos para a comunidade cientı́fica.

1. Introdução
A computação quântica tem sido apontada como a próxima revolução tecnológica, prome-
tendo avanços significativos em áreas como otimização, inteligência artificial, simulações
quı́micas e segurança cibernética [Preskill 2018]. Diferente dos computadores comuns, os
computadores quânticos exploram princı́pios fundamentais da mecânica quântica, como
a superposição e o emaranhamento, permitindo representar e processar informações e da-
dos de maneira mais eficiente. Grandes empresas como IBM, Google e Microsoft, assim
como governos ao redor do mundo, têm investido em massa nessa tecnologia emergente.
Segundo a McKinsey (2024), a computação quântica deverá gerar cerca de US$1,3 trilhão
em valor econômico até 2035 [Company 2024].



Apesar de seu potencial transformador, essa tecnologia ainda enfrenta desafios
significativos. Entre eles, destacam-se as limitações fı́sicas dos dispositivos, a necessidade
de correção de erros e a dificuldade de acesso a hardware quântico em larga escala. Por
esse motivo, o uso generalizado de computadores quânticos ainda não é uma realidade, e
pesquisadores e desenvolvedores recorrem amplamente a simulações quânticas realizadas
em computadores clássicos. Diversos grupos de pesquisa têm explorado soluções alter-
nativas para otimizar simulações quânticas, como o uso de clusters de alto desempenho,
arquiteturas hı́bridas CPU-GPU e plataformas de computação em nuvem especializadas
[Sarode 2024]. Cada abordagem apresenta vantagens e limitações, relacionadas tanto ao
desempenho quanto à escalabilidade e ao custo operacional.

Nesse contexto, ferramentas como Qiskit - um framework de código aberto desen-
volvido pela IBM - têm desempenhado papel central ao permitir a simulação e desenvol-
vimento de algoritmos quânticos em ambientes clássicos. No entanto, a execução dessas
simulações demanda grande poder computacional, especialmente para circuitos quânticos
de escala maior, o que limita a experimentação e o avanço da pesquisa. Para contor-
nar restrições computacionais em diversas áreas cientı́ficas, tem-se utilizado unidades
de processamento gráfico (GPUs), conhecidas pela sua alta capacidade de paralelização
[Schmidt and Hildebrandt 2024].

Diante desse cenário, este trabalho propõe o desenvolvimento e validação de um
ambiente hı́brido que integra o framework Qiskit com recursos de computação paralela
baseados em GPU, para execução remota da simulação de algoritmos quânticos. O de-
senvolvimento inclui o desenvolvimento de uma API RESTful para gerenciar a criação,
o armazenamento e a inspeção de objetos Qobj, permitindo que usuários submetam cir-
cuitos quânticos em formato JSON e recebam resultados diretamente em seus ambientes
Qiskit. A proposta busca superar os gargalos computacionais que limitam a simulação
de circuitos quânticos em hardware local, especialmente quando se lida com um número
elevado de qubits e operações unitárias complexas.

Futuramente, o ambiente aqui proposto irá compor uma infraestrutura de
computação de alto desempenho capaz de escalar dinamicamente problemas em
simulações quânticas, conforme a demanda. Ao combinar elementos da computação
quântica com técnicas consolidadas de computação de alto desempenho, este trabalho
busca democratizar o acesso remoto desses recursos.

O restante deste artigo está organizado da seguinte forma: na Seção 2 descrevem-
se os trabalhos relacionados presentes na literatura; na Seção 3, realiza-se uma revisão
dos fundamentos da Qiskit e do processamento em GPU baseado em CUDA; a Seção
4 detalha a metodologia, cuja abordagem é hı́brida, combinando computação clássica
acelerada por GPU (via CUDA) e simulação de circuitos quânticos (via Qiskit), integrados
por uma camada de comunicação utilizando o formato JSON; na Seção 5, apresentamos
resultados promissores do cálculo A · x⃗ (onde A é a matriz e x⃗ o vetor); por fim, na Seção
6, concluı́mos o projeto com a maior parte dos resultados satisfatórios desta pesquisa que
está em estágio inicial.

2. Trabalhos Relacionados
A otimização de simulações quânticas em hardware clássico é um campo de pesquisa
ativo. O estudo de [Sarode 2024] apresenta uma análise comparativa de simulação em



GPU, contrastando a partição de circuitos (usando CutQC) com a execução completa
(usando Qiskit-Aer-GPU). Conclui-se que a partição reduz o consumo de memória, sendo
vantajosa em cenários com recursos limitados, enquanto a simulação completa oferece
maior desempenho em sistemas com GPUs abundantes, evitando o custo exponencial do
pós-processamento de múltiplos subcircuitos.

No contexto de hardware, o trabalho de [Schieffer et al. 2024] investiga o im-
pacto da memória unificada do superchip Grace Hopper em aplicações de HPC, incluindo
simulações no Qiskit. O estudo demonstra que o desempenho da memória integrada
CPU-GPU é fortemente influenciado pelo padrão de inicialização e acesso aos dados,
oferecendo diretrizes para otimização em arquiteturas hı́bridas relevantes para a nossa
proposta.

A arquitetura aqui proposta, que explora a representação padronizada Qobj em
JSON para fragmentar e distribuir cargas de trabalho quânticas, espelha conceitualmente
o teorema de repetição paralela de Raz [Raz 1998], o qual demonstra que a repetição si-
multânea de um protocolo reduz a probabilidade de erro de modo exponencial. Neste
trabalho, cada Qobj é particionado em subexperimentos independentes — análogo às “ro-
dadas” paralelas do teorema — e encaminhado a um módulo de aceleração CUDA/GPU
capaz de processar vetores e matrizes unitárias em larga escala. Essa combinação não
só possibilita ganhos de performance ao explorar o paralelismo massivo da GPU, mas
também oferece um banco de experimentos reproduzı́veis que pode ser utilizado para
medir, de forma empı́rica, a queda na taxa de falhas das simulações quânticas conforme
aumentamos o número de repetições paralelas.

3. Fundamentação Teórica
A fundamentação teórica deste trabalho apresenta os conceitos básicos do Qiskit e do
processamento em GPU baseado em CUDA.

3.1. Qiskit
Qiskit (Quantum Information Science Kit) é um SDK (Software Development Kit) de
código aberto para trabalhar com computadores quânticos em nı́vel de circuitos, pulsos
e algoritmos. Desenvolvido pela IBM, o Qiskit foi projetado para permitir a construção,
simulação e execução de programas quânticos de forma mais acessı́vel. Ele atua como
uma interface fundamental entre os algoritmos quânticos abstratos e a execução prática,
seja em simuladores quânticos clássicos de alto desempenho ou diretamente em hardware
quântico real, incluindo os processadores quânticos da IBM Quantum.

No campo da computação quântica, o Qiskit trabalha com conceitos de
superposição, a qual permite que um sistema com n qubits processe simultaneamente
todos os 2n estados em uma única operação, o que explora o paralelismo quântico ine-
rente. Isso possibilita a execução da simulação de algoritmos que, quando executados em
computadores quânticos, podem superar exponencialmente a eficiência dos algoritmos
clássicos em certas tarefas, como fatoração de números (algoritmo de Shor) e busca em
bases de dados não estruturadas(Algoritmo de Grover).

A arquitetura do Qiskit é composta por várias camadas que cobrem diferentes
aspectos do desenvolvimento quântico. O Qiskit Terra é a base que fornece as ferramen-
tas fundamentais para a criação e manipulação de circuitos quânticos, gerenciamento de



portas quânticas, medições e registros clássicos. Complementando isso, simulador Aer
do Qiskit, desenvolvido pela IBM, foi utilizado para as execuções locais dos circuitos e
oferece simuladores otimizados para testar e depurar programas quânticos em máquinas
clássicas antes de enviá-los para o hardware [IBM 2023]. Além dessas funcionalidades
essenciais, o ecossistema Qiskit inclui bibliotecas para algoritmos quânticos avançados,
como otimização, quı́mica quântica e aprendizado de máquina quântico. Ademais, o SDK
disponibiliza ferramentas para caracterização de ruı́do e mitigação de erros.

3.1.1. Qobj

O Quantum Object (Qobj) é uma estrutura de dados que representa um pacote completo
de informações necessárias para a execução de um experimento quântico em um simu-
lador ou em um backend real. Trata-se de um objeto serializável em formato JSON que
descreve, entre outros elementos, o circuito quântico a ser executado, o backend de des-
tino e as instruções de execução. Sua estrutura é composta por três elementos principais:
um Qobj header, que contém informações gerais como nome do job, backend e versão;
uma lista de experimentos, que inclui os circuitos ou schedules a serem executados; e um
conjunto de parâmetros globais de configuração, como o número de shots e a seed para
controle de aleatoriedade em simulações.

3.2. CUDA
CUDA (Compute Unified Device Architecture) é um modelo de programação paralela de-
senvolvido pela NVIDIA que permite a utilização de unidades de processamento gráfico
(GPUs) para computação de propósito geral (GPGPU).

A hierarquia de memória é um fator crı́tico para o desempenho em CUDA. Para
a aceleração, foi utilizada a arquitetura CUDA da NVIDIA, que permite computação de
propósito geral em GPUs. O desempenho em CUDA é sensı́vel à hierarquia de memória,
sendo crucial o uso de registradores rápidos e memória compartilhada para a comunicação
entre threads, enquanto a memória global, de maior latência, é usada para dados massivos.

No contexto deste trabalho, CUDA é especialmente eficiente para:

1. Operações Tensoriais: cálculo paralelo de amplitudes de estado, por exemplo,

|ψ′⟩ = Uk ⊗ In−k|ψ⟩,

onde portas quânticas são aplicadas como produtos tensoriais paralelizáveis.
2. Paralelismo de Portas: execução concorrente de portas independentes via

múltiplas streams CUDA.
3. Manipulação de Estados: atualização paralela de vetores de estado com 2n com-

ponentes, proporcionando speedup aproximado dado por:

Speedup = O

(
# elementos

# CUDA cores

)
.

4. Metodologia
O projeto a que este trabalho está incluı́do tem como etapas: (i) projetar uma API RESTful
que possibilite a comunicação entre o Qiskit e uma infraestrutura baseada em CUDA; (ii)



implementar algoritmos de simulação de circuitos quânticos otimizados para execução pa-
ralela em GPU ao realizar cálculos de matrizes e vetores relacionados a circuitos quânticos
de forma mais eficiente.; (iii) avaliar experimentalmente os ganhos de desempenho obti-
dos com a paralelização em comparação com abordagens puramente baseadas em CPU;
e (iv) propor uma arquitetura escalável e replicável que possa ser utilizada por pesquisa-
dores e instituições com recursos computacionais limitados.

Assim, a arquitetura proposta neste trabalho, e que corresponde ao estágio inicial
do projeto, cumpre as três primeiras etapas e estabelece um fluxo coeso a ser detalhado
nas subseções desta metodologia: em Seção 4.1 detalha a abstração via API; a Seção 4.2
explica como a aceleração via CUDA realiza operações lineares complexas delegadas à
GPU e, por fim, a Seção 4.3 projeta a orquestração Python, como a ponte que integra o
Qiskit, a serialização e CUDA.

4.1. Design da API integrada ao Qiskit

A API foi implementada como um serviço RESTful em Python, utilizando o framework
Flask para modularizar a comunicação entre o cliente e os componentes internos do sis-
tema. Sua função principal é automatizar a criação, armazenamento e consulta de objetos
Qiskit do tipo “Qobj” em um servidor local. Embora todos os módulos estejam hospe-
dados na mesma máquina, a utilização do Flask permite uma separação lógica entre as
etapas do pipeline, facilitando a organização do código e futuras extensões para arqui-
teturas distribuı́das. O ambiente Python foi configurado com Qiskit Aer (simulador de
alto desempenho), Flask e bibliotecas padrão de manipulação e serialização de arquivos,
como pickle e os.

O fluxo apresentado na Figura 1 descreve a interação entre os principais com-
ponentes da arquitetura: o servidor Flask, o módulo intermediário ponte.py e o núcleo
de execução em GPU (cuda exec). Inicialmente, ponte.py envia uma requisição GET
ao servidor Flask (/readqobj) para obter um objeto quântico (Qobj) em formato JSON,
previamente armazenado. Após receber esse JSON, ponte.py o converte em um objeto
QuantumCircuit e extrai a matriz do operador e o vetor de estado associados, que são se-
rializados em arquivos binários (matrix.bin e vector.bin). Em seguida, esses arquivos são
passados como entrada para o executável CUDA (cuda exec), responsável por realizar o
cálculo em GPU. O resultado, salvo em result.bin, é então lido e convertido novamente
para JSON por ponte.py. Por fim, esse resultado é enviado de volta ao servidor Flask por
meio de uma requisição POST (/result). O servidor responde com um status HTTP 200,
confirmando o recebimento e o encerramento do fluxo.

Os efeitos práticos da implementação desse fluxo de infraestrutura cliente-
servidor, bem como seu desempenho e limitações observadas durante a execução de
simulações, serão devidamente analisados e discutidos na Seção de Resultados. Essa
avaliação visa fornecer uma compreensão crı́tica sobre a eficiência da arquitetura pro-
posta e seu potencial de aplicação em cenários reais de simulação quântica.

4.2. Processamento Paralelo em GPU com CUDA

O núcleo da aceleração computacional é um kernel desenvolvido em CUDA, encapsu-
lado no arquivo cuda exec.cu, cuja responsabilidade é executar a operação de pro-
duto matriz-vetor com números complexos. Essa operação é central para a simulação de



Figura 1. Diagrama de sequência do fluxo da arquitetura integrada ao Qiskit.

estados quânticos, pois aplica a matriz unitária, que representa o circuito quântico, so-
bre o vetor de estado do sistema. O processo inicia-se com a alocação de memória no
hospedeiro (host) para a matriz (h matrix), o vetor de entrada (h vector) e o vetor
de resultado (h result). Em seguida, os dados são carregados a partir dos arquivos
binários matrix.bin e vector.bin, que armazenam as informações no formato na-
tivo cuFloatComplex.

Com os dados preparados no host, a etapa seguinte consiste na transferência
para a memória do dispositivo de processamento (GPU). A API do CUDA é utili-
zada para alocar memória na GPU com cudaMalloc e para copiar os dados com
cudaMemcpyHostToDevice. Uma vez que a matriz e o vetor residem na memória da
GPU, o kernel é invocado. A grade de threads (gridSize) é dimensionada para cobrir
todas as linhas da matriz, permitindo que cada thread calcule, em paralelo, um único ele-
mento do vetor de resultado. Conforme o trecho de código a seguir, cada thread computa
o produto escalar entre a sua linha correspondente na matriz e o vetor de estado.

cuFloatComplex sum = make_cuFloatComplex(0,0);
for (int j = 0; j < cols; j++)

sum = cuCaddf(sum, cuCmulf(matrix[row*cols + j], vector[j]));
result[row] = sum;

Finalizada a execução do kernel, os resultados são transferidos de volta para o host
com a função cudaMemcpyDeviceToHost, salvos no arquivo result.bin e, por



fim, toda a memória alocada em ambos os dispositivos é liberada para evitar vazamentos
de recursos.

4.3. Ponte de Integração entre Qiskit e o Núcleo de Aceleração CUDA
A interface entre o ecossistema Qiskit e o módulo de aceleração baseado em
GPU (CUDA) é realizada pelo script Python ponte.py, que funciona como ca-
mada de abstração e orquestração. Esse componente recebe requisições REST
no endpoint /readqobj do serviço Flask, obtém o Qobj em JSON e o
converte em um objeto QuantumCircuit. Em seguida, extrai a matriz
unitária do operador via Operator(circ).data e o vetor de estado com
Statevector.from instruction(circ).data. Ambos os arrays são se-
rializados em formato np.complex64 e gravados em dois arquivos binários —
matrix.bin e vector.bin — como pré-requisito para a execução em GPU.

O “núcleo CUDA” propriamente dito é um executável compilado em C++/CUDA
(cuda exec) que realiza a multiplicação de matrizes e vetores de forma massiva-
mente paralela na GPU. Ele é invocado por ponte.py via subprocess, rece-
bendo a dimensão do sistema (2n) como argumento de linha de comando e carre-
gando matrix.bin e vector.bin diretamente na memória de dispositivo. Após
a computação, produz um arquivo de saı́da result.bin, contendo o vetor resultante
também em np.complex64.

ponte.py então lê result.bin, converte os dados de volta para estruturas
Python (dicionário/JSON) e envia o resultado ao Flask por meio de uma requisição POST
ao endpoint /result, encerrando o ciclo de processamento.

Ao empregar CUDA, o sistema explora a arquitetura SIMT (Single Instruction,
Multiple Threads) das GPUs, dividindo cada operação de multiplicação em milhares de
threads que trabalham em paralelo. Essa abordagem não só reduz drasticamente o tempo
de execução para grandes dimensões de circuito (por exemplo, matrizes 1000 × 1000),
mas também demonstra a relevância do núcleo CUDA como componente crı́tico para
viabilizar simulações quânticas em larga escala. Future works incluirão otimizações de
gerenciamento de memória GPU e balanceamento de carga para maximizar ainda mais o
desempenho e reduzir a latência do pipeline.

5. Resultados e Discussão
O projeto apresenta resultados experimentais, embora ainda em fase inicial, com testes
focados em circuitos quânticos simples enviados via qobj para o CUDA, que multiplicou
matrizes unitárias de baixa dimensão e vetores de estado reduzidos. Com isso, avaliando
o potencial de aceleração, foi implementado um testbench.

Seguindo o fluxo de arquitetura descrito na Figura 1, um cliente envia uma
requisição POST para /generateqobj, o serviço lê um payload JSON contendo: (1) o
número de qubits, (2) uma lista ordenada de definições de portas (cada uma especificando
o tipo e os qubits-alvo) e (3) um prefixo de nome de arquivo opcional. Internamente, é
instanciado um QuantumCircuit com o tamanho de registrador solicitado, itera-se sobre
cada instrução de porta (por exemplo, Hadamard ou CNOT) para aplicá-la, e então o cir-
cuito é transpilado para o backend qasm simulator do Aer. O Qobj resultante é serializado
via pickle e gravado em disco como ≪namePath>.qobj.



Para permitir que clientes inspecionem os objetos salvos, implementou-se um end-
point GET em /readqobj. Dado um parâmetro de consulta namePath, o serviço carrega o
arquivo pickle e determina dinamicamente se ele contém um Qobj (com .config, .header
e .experiments) ou um QuantumCircuit bruto. No caso de um Qobj, metadados, como
nome e versão do backend, número de shots, tamanhos de registradores, configurações de
medição e sequências de instruções detalhadas por experimento, são extraı́dos acessando
os atributos com verificações de existência. Se o arquivo contiver apenas um circuito, ex-
traı́mos o número de qubits e os dados de instrução diretamente do atributo .data do cir-
cuito. Por fim, o endpoint retorna um objeto JSON estruturado contendo qobj data, header
e uma lista de experiments, cada um com sua própria configuração e lista de instruções.

Para permitir a integração direta com a interface padrão de execução de circui-
tos do Qiskit, desenvolveu-se um conjunto de componentes adicionais que seguem as
abstrações exigidas pela arquitetura modular do framework. A seguir, detalhamos a
implementação desses elementos:

• Provider: Implementou-se um provider customizado do Qiskit que encaminha a
execução de circuitos para o serviço RESTful criado anteriormente. Para isso,
estendeu-se as classes base BackendV1 e JobV1 do Qiskit, além de criar um Pro-
vider que registra o nosso backend.

• Design do Backend: A classe WebserviceBackend herda de BackendV1 e recebe,
no construtor, a URL do serviço Flask (http://127.0.0.1:5000). No método run(),
aceita-se um único QuantumCircuit por vez, é extraı́do seu número de qubits e as
instruções — mapeando portas H e CX para um JSON compatı́vel com o endpoint
/generateqobj — e fazemos o POST para gerar e salvar o Qobj no servidor. Caso
o servidor responda com erro, uma exceção é lançada para interromper o fluxo.

• Gerenciamento de Jobs: A classe WebserviceJob armazena o job id, o backend e
o circuito de entrada. Seu estado inicial é RUNNING. Ao chamar result(), fazemos
um GET em /readqobj para recuperar o arquivo .qobj serializado, extraı́mos o
JSON de metadados e construı́mos um objeto Result do Qiskit com um resultado
simulado (contagens de exemplo e sucesso). Após obter o resultado, atualizamos
o status para DONE e retornamos o Result para o cliente.

• Registro de Backend: Em WebserviceProvider, estendemos Provider para instan-
ciar um QasmBackendConfiguration que descreve nosso backend (nome, versão,
número de qubits, gates suportadas, etc.). O método backends() permite listar to-
dos os backends registrados ou filtrar por nome, integrando-se ao fluxo padrão de
seleção do Qiskit.
Os resultados obtidos demonstram que a arquitetura proposta consegue reproduzir,

com fidelidade e flexibilidade, o ciclo completo de construção, serialização e recuperação
de circuitos quânticos, integrando-se de forma transparente à interface do Qiskit. A
criação de uma camada RESTful entre o cliente e o backend facilita o desacoplamento
entre a lógica de construção dos circuitos e o ambiente de execução, permitindo futuras
extensões para execução remota. Esses aspectos indicam caminhos promissores para tra-
balho futuro, como o suporte a múltiplas instruções nativas e a adaptação do serviço para
backends reais de clusters personalizados.

Na Figura 2, pode-se observar o ambiente de teste para uma matriz de dimensão
4 × 4. Como esperado para um sistema de pequena escala, os resultados não indicaram
speedup em relação à execução na CPU.



Essa falta de aceleração ocorre porque, em matrizes pequenas, o overhead associ-
ado à transferência de dados para a memória da GPU e à inicialização do processamento
paralelo domina o tempo total de execução. O verdadeiro ganho de desempenho com
CUDA só se manifesta em problemas de grande porte, onde a capacidade de paralelização
massiva da GPU é plenamente explorada.

Para ilustrar esse ponto, a Tabela 2 reúne os resultados de um código genérico de
multiplicação de matrizes em duas escalas distintas:

• Matrizes 3 × 3: O speedup é desprezı́vel (≈ 0,002×, conforme Tabela 2), pois
a CPU é mais eficiente para uma carga de trabalho tão baixa, evitando o custo do
overhead.

• Matrizes 1000 × 1000: O speedup torna-se claro e significativo (≈ 130×, con-
forme Tabela 2), uma vez que o processamento paralelo de milhões de operações
na GPU supera em muito o tempo de inicialização.

Tabela 1. Comparative Performance between GPU (CUDA) and CPU in Matrix
Multiplication

Dimension GPU Time (ms) CPU Time (ms) Speedup (×)

3× 3 1.992 0.004288 0.00215
1000× 1000 17.203 2235.564 129.95

Source: Developed by the authors

Tabela 2. Desempenho comparativo entre GPU (CUDA) e CPU na multiplicação
de matrizes

Dimensão Tempo GPU (ms) Tempo CPU (ms) Speedup (×)

3× 3 1,992 0,004288 0,00215
1000× 1000 17,203 2.235,564 129,95

Fonte: Elaborado pelos autores

Figura 2. Benchmark da multiplicação de uma matriz por vetor complexo (di-
mensão 4× 4).

Portanto, embora o benchmark atual não mostre aceleração para pequenas di-
mensões, ele valida a implementação. Os resultados apresentados na Tabela 2 mostram
que, à medida que a escala do problema cresce, a paralelização em GPU passa a ofere-
cer ganhos de desempenho substanciais. Assim, ao avançar para a simulação de sistemas
quânticos maiores, o projeto consiga explorar o potencial da GPU para obter ganhos de
desempenho expressivos.



6. Conclusão Parcial e Perspectivas Futuras
Este trabalho demonstrou a viabilidade de uma arquitetura clássico-quântica hı́brida,
construindo um backend local integrado ao Qiskit. A API RESTful em Python com
Flask automatizou a gestão de objetos Qobj, e um Provider/Backend customiza-
dos viabilizaram o encaminhamento de circuitos.

Um pilar foi a otimização de operações quânticas via GPU. Com CUDA e
cuComplex, desenvolveu-se um sistema para multiplicação de matriz por vetor. Os
resultados experimentais são um teste inicial, demonstrando a capacidade de aceleração
da GPU para certas operações. Embora preliminares, os dados são promissores: a GPU
superou a CPU em larga escala, com um speedup de aproximadamente 130× para matrizes
1000×1000, reforçando o potencial da computação paralela em simulações quânticas.

Futuramente, a pesquisa expandirá o sistema, implementando o produto de Kro-
necker (C = A⊗B) em CUDA. Serão realizados testes mais robustos para uma avaliação
completa. No entanto, em seu estágio inicial, não é possı́vel comprovar todas as potenci-
alidades, pois o trabalho e sua base experimental serão expandidos. O objetivo é conso-
lidar a arquitetura, robustecendo a integração Qiskit/GPU, para criar um ambiente de
simulação remoto, rápido e confiável.

Atualmente, o foco é a integração Qiskit com o módulo GPGPU. O servidor de
simulação proposto incluirá enfileiramento de prioridade, agendamento de jobs, despacho
inteligente e drivers para hardware especializado. Este trabalho integra um projeto maior,
onde a infraestrutura será expandida para abarcar toda a cadeia de processamento — do
recebimento de Qobjs via WebServices à execução em variadas arquiteturas de aceleração
— consolidando a arquitetura de um backend independente.

Referências
Company, M. . (2024). What is quantum computing? McKinsey.com.

IBM (2023). Qiskit: An open-source framework for quantum computing. https://
qiskit.org.

Preskill, J. (2018). Quantum Computing in the NISQ era and beyond. Quantum, 2:79.

Raz, R. (1998). A parallel repetition theorem. SIAM Journal on Computing, 27(3):763–
803.

Sarode, K. (2024). Circuit partitioning and full circuit execution: A comparative study
of gpu-based quantum circuit simulation. Cited by: 0; All Open Access, Green Open
Access.

Schieffer, G., Wahlgren, J., Ren, J., Faj, J., and Peng, I. (2024). Harnessing integrated
cpu-gpu system memory for hpc: A first look into grace hopper. Cited by: 3; All Open
Access, Green Open Access, Hybrid Gold Open Access.

Schmidt, B. and Hildebrandt, A. (2024). From gpus to ai and quantum: three waves of
acceleration in bioinformatics. Drug Discovery Today, 29(6):103990.


