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Abstract. Current approaches to implementing quantum-algorithm simulations
in hardware suffer from performance and complexity issues. In this article, we
revisit an FPGA implementation of a dedicated 3-qubit processor that supports
the S gate, T gate, Hadamard gate, Pauli-X gate, CNOT gate, and Toffoli gate.
The proposed architecture combines high performance with design simplicity
by enabling the efficient simulation of a quantum circuit’s behavior through a
programmable, RISC-inspired model. This eliminates the need to re-synthesize
the design, reduces potential errors, and overcomes some of the limitations of
existing solutions. Such an approach could represent a viable alternative for the
development and validation of new quantum-based systems.

Resumo. As atuais abordagens para implementagdo de simulacdo algoritmos
quanticos em hardware sofrem de problemas relacionados a desempenho e com-
plexidade. Neste artigo, revisitamos uma implementacdo em FPGA de um pro-
cessador dedicado de 3 qubits para dar suporte as portas qudnticas Sgate,
Tgate, Hadamard, Paulix, CNOT, e Toffoli. A arquitetura proposta alia alto de-
sempenho a simplicidade de projeto, ja que permite simular o comportamento
de um circuito qudntico de forma eficiente com um modelo programdvel inspi-
rado na arquitetura RISC, eliminando a necessidade de re-sintese do modelo,
reduzindo possiveis erros e algumas limitacoes de outras solucdes existentes.
Tal abordagem pode representar uma alternativa vidvel ao desenvolvimento e
validagdo de novas solugoes baseadas em sistemas qudanticos.

1. Introducao

A computacao quantica se destaca como uma das tecnologias emergentes mais promisso-
ras da Computacdo, pois sua natureza exponencial confere a ela a capacidade de resolver
alguns problemas intratdveis para sistemas classicos [Feynman 1986]. No entanto, essa
mesma caracteristica impde limitagdes fisicas a simulacdo de sistemas quanticos em ar-
quiteturas cldssicas, o que dificulta sua escalabilidade [Maron et al. 2013].

Por outro lado, dispositivos reconfigurdveis oferecem a flexibilidade necessaria
para simular um ambiente quantico com baixa laténcia, pipelines configuraveis e alto
grau de paralelismo. Assim, as FPGAs surgem como uma plataforma promissora para
essa tarefa [Fujishima et al. 2003] [Khalid et al. 2004]. Neste trabalho, apresentamos o



projeto em SystemVerilog de seis portas elementares (S, T, Hadamard, Pauli-X, Toffoli e
CNOT) em um processador dedicado, a sua sintese em FPGA e uma comparagao entre os
resultados de simulagdo para (ModelSim) e a execug¢do na placa-alvo.

Propde-se esse conjunto de portas como um aprimoramento de uma solugao inspi-
rada na arquitetura RISC para a simulacao de um processador quantico em FPGA apresen-
tada em [Concei¢do and Reis 2015]. O design utiliza um conjunto reduzido de instrugdes
com formato uniforme, garantindo baixa laténcia e escalabilidade. Além disso, a estrutura
parametrizada permite a integraciao de pipelines mais complexos, explorando o alto grau
de paralelismo inerente as FPGAs.

Como metodologia de implementacao e validacdo,sao utilizadas duas abordagens:
em hardware, na FPGA Cyclone IV DE2i-150, e em software, no ModelSim. Além
disso, como ambiente de teste e verificagao funcional, foi adotada uma abordagem de
alta diversidade na geracao de vetores de teste, usando niimeros aleatérios para cada porta
quantica. Mapeamos os sinais de entrada e saida e acompanhamos suas variagdes ao longo
do tempo, confirmando que cada porta operava em um unico ciclo de clock e produzia
resultados conforme o esperado.

2. Fundamentacao Teérica

A computagdo quantica possui como principal e mais bésica unidade de informacdo o
qubit. O qubit pode assumir os valores |0}, |1) ou uma superposi¢do de ambos, sendo |0)
e |1) vetores bidimensionais de niimeros complexos[Nielsen and Chuang 2000]. Sistemas
com mais de um qubit podem ser representados por uma combinacdo linear dos vetores
que correspondem aos possiveis estados nos quais o sistema pode colapsar:

) = apl00---0) + ar]00---1) + ... + gy |11---1),

de modo que o numero de componentes seja igual a 2", sendo n 0 numero de qubits do
sistema. Utilizando essa propriedade, podemos criar uma estrutura de dados chamada
quantum register, que representa o sistema quantico apenas armazenando os valores dos
coeficientes «; e abstraindo a representacao explicita de cada componente.

Os algoritmos quanticos sdo, basicamente, uma sequéncia de portas quanticas
aplicadas ao sistema de forma sequencial, alterando seu estado [Shor 1994]. Essas portas
quanticas podem ser representadas por matrizes quadradas e, ao multiplicarmos o vetor
que representa o estado do sistema por uma matriz que representa uma porta, obtemos o
resultado da aplicac@o dessa porta quantica. Assim, podemos representar os algoritmos
quanticos como uma sequéncia de multiplicagdes de matrizes pelos vetores componentes
do sistema.

Apesar de um sistema quantico poder assumir diversos valores a0 mesmo tempo
em razdo do fendmeno da superposi¢io, apenas um valor € obtido como saida durante a
medi¢do. Em resumo, os algoritmos quanticos t€m como objetivo, por meio da aplicagao
das portas quanticas, manipular essas probabilidades de forma a garantir que, ao medir o
sistema, o valor colapsado seja o desejado. Essa manipulagcdo baseia-se na propriedade
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ou seja, a soma dos quadrados dos médulos dos coeficientes que multiplicam as compo-
nentes do vetor-estado deve ser igual a 1 [Nielsen and Chuang 2000]. Dessa forma, os
algoritmos quanticos utilizam a manipulacdo dos coeficientes para que a probabilidade de
o sistema colapsar no estado desejado durante a observacao seja a maior possivel.

3. Arquitetura

Como os algoritmos quanticos funcionam aplicando portas quanticas sequencialmente a
um sistema , sdo adotadas para a arquitetura proposta um formato de instru¢do que arma-
zena apenas os indices dos qubits afetados e o c6digo da operagdo. Para tanto, o formato
de instrugdo € estruturado em quatro campos: target, ctrlO, ctrll e opcode. Os campos tar-
get, ctrl0 e ctrll representam, respectivamente, os indices dos qubits sobre o qual a porta
serd aplicada, enquanto o opcode identifica qual porta quantica serd executada, conforme
ilustrado na figura 1.

Instrucdo | Opcode | Target Ctrl_0 Ctrl_0

Bits logz(M) logz(N) logz(N) logz(N)

Figura 1. Formato de instrucao (V numero de qubits, // nimero de portas).

Para viabilizar a representacdo de um sistema quantico em hardware, sao emprega-
das duas estruturas de dados: quantum register e complex. O complex é uma representacao
de niimero complexo em 32 bits (16 bits para parte real e 16 bits para parte imagindria),
ambos em ponto fixo 8 : 8. Ja o quantum register € um vetor de 2" elementos do tipo
complex, onde n é o nimero de qubits; cada elemento corresponde ao coeficiente que mul-
tiplica uma das componentes do vetor-estado. Durante a execuc¢do, aplica-se uma porta
de cada vez sobre o quantum register; ao finalizar uma instruc¢do, a proxima € executada.

Instrugdo 1

Instrugdo 2
Instrugdo 3
Instrugdo 4

Opcode Target Ctrl0  Ctrl1

N

Figura 2. diagrama de blocos da arquitetura. (Fonte: [Conceicao and Reis 2015])




3.1. Operacao das Portas

A arquitetura é do tipo SIMD (Single Instruction Multiple Data) para realizagdo das
operacdes: cada instrucdo € aplicada a multiplos dados simultaneamente, controlados
pelos campos target, ctrl0 e ctrll por meio da acdo de multiplexadores. Todas as portas
recebem um guantum register e retornam outro quantum register. Na pratica, o sistema
consiste em uma memdria Unica realimentada. A memodria contém os dados dos coefici-
entes do quantum register, e é realimentada a cada ciclo com o resultado da parte com-
binacional que implementa as portas quanticas, controladas por uma unidade de controle
que ativa o caminho de dados. Multiplexadores, multiplicadores e somadores de niimeros
complexos simulam o comportamento de cada porta.

As portas Toffoli, Pauli-X e CNOT sao implementadas sobretudo com multiple-
xadores. Ao aplicar Pauli-X em um udnico qubit, invertemos os coeficientes |0) <> |1).
Em um sistema de trés qubits, o comportamento € mostrado na Fig. 3. A porta Toffoli s6
troca indices quando ambos os bits de controle (ctrll e ctrl0) sdo 1. A porta CNOT s6
leva em conta o controle ctrl0, invertendo o alvo se este for 1, como ilustrao na Figura 4 .

lp) ||000) [001)(|010)|[011)|100) |[101)||110)||111)

lp) |]000) [001)(|010)|[011)|100) |[101)||110)|[111)

Figura 3. Comportamento da porta Pauli-X em 3 qubits.



lyy |]000)||001)||010)(|011)||100)|[101) |110) [111)

Ctrl_0 \o 1/\0 1/\0 1/\0 1A0 1A0 1A0 1\0 1

lw) 000|001} [010) [011)|[100)||101)|[110)|[111)

Figura 4. Comportamento da porta CNOT.

Ja para as portas de fase (Hadamard, S-gate e T-gate), somadores e multiplica-
dores de nimeros complexos sdo combinados aos multiplexadores. A porta Hadamard,
quando aplicada a um qubit em seu estado base, cria um estado de superposi¢do entre
os componentes do vetor de estado, fazendo com que a probabilidade de colapso em
qualquer um dos resultados seja igual, conforme exemplificado na Figura 5. Ja a S-gate
multiplica por i = ¢'™/2 os componentes |1) do qubit alvo, como mostrado na figura 6,
gerando uma rotag@o de fase de /2 (90°). De forma andloga, a T-gate multiplica por
e'™/* os componentes |1) do qubit alvo, correspondendo a uma rotacio de fase de 7/4
(45°), como mostrado na figura 7 e 8.

lwy |1000)/]001){|010)|[011)|100) |101)|[110)||111)
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=

lwy |]000)/|001)[]010)|[011){|100)|[101)||110)|[111)

Figura 5. Comportamento da porta Hadamard.



ly) |]000) [001)/[010) |011)||100)([101)||110)|[111)

Iy ||000) [001)/]010) [011)|[100)||101)|[110)|]111)

Figura 6. Comportamento da S-gate (r/2 de fase).

0> [0)

Figura 7. Exemplo da S-gate na esfera de bloch (7 /2 de fase).

0> |0)

Figura 8. Exemplo da T-gate na esfera de bloch (7 /4 de fase).

4. Validacao da arquitetura

Para assegurar a validade da implementacdo proposta, foram realizadas rotinas de
verificacao funcional por simulagdo, e prototipacdo em hardware na placa FPGA DE2i-



150. Ambas as etapas sdo descritas em detalhes a seguir.

4.1. Verificacao Funcional

A verificacdo funcional do processador foi realizada com o software ModelSim. Adotou-
se uma abordagem em duas etapas, testando separadamente o Médulo Serial e o Médulo
de Processamento.

No teste do Mddulo Serial, o objetivo principal foi verificar se a maquina de es-
tados, a decodificacdo das instrucdes e os sinais de controle funcionavam conforme o
esperado. Para isso, entradas aleatdrias foram aplicadas ao médulo a uma frequéncia
igual a utilizada na integragdo com a placa de desenvolvimento. Em seguida, os sinais de
saida e os pulsos de controle gerados foram comparados com os resultados previstos.

J4 na verificacdo do Mddulo de Processamento, avaliou-se o comportamento
das maquinas de estados e a correcdo das operacdes realizadas pela ULA. Durante
a simulagdo, foram usados vetores de entrada selecionados para exercitar as portas
quanticas em condi¢des normais e extremas, garantindo a estabilidade e a robustez do
circuito.

4.2. Validacao em FPGA

Na valida¢do em FPGA, a principal preocupacdo foi a propagacao correta das instru¢oes
dentro do processador e a comunicacdo com a estagao de trabalho. Para isso, aplicaram-se
sequéncias curtas de instru¢des em diferentes baud rates, com o objetivo de assegurar que
os dados transitavam corretamente por todo o sistema.

Com a utilizagao de um clock de 50 MHz e um baud rate de 115 200 bps, os
resultados foram conforme o esperado, tanto os resultados finais quanto os resultados
intermedidrios.

4.2.1. Comunicacio com a estacao de trabalho

Para a comunicacao entre a FPGA e a fonte de instru¢des, foi escolhida a especificacao
serial RS-232. Essa especificagdo baseia-se em comunicagdo assincrona, transmitindo
8 bits de informacdo, 1 bit de inicio e 1 bit de parada. A transmissdo € feita por duas
linhas principais: TXD, responsdvel pela transmissao do sinal, e RXD, responsavel pelo
recebimento do sinal. A velocidade de comunicacao é definida pelo baud rate, que na
FPGA de teste foi configurado em 115200 bps.

Bit de parada

Bits de dados f

Bit de inicio Bit de inicio

Figura 9. Formato de envio e recebimento no RS-232.



Como o RS-232 suporta apenas 8 bits por quadro e a instrucao da arquitetura exige
9 bits (3 do opcode, 2 do target, 2 do ctrl0 e 2 do ctrll), foi necessario implementar uma
maquina de estados no mddulo serial para controlar o envio e o recebimento sem perdas.
Essa maquina divide cada instrucdo em duas partes, enviando uma metade primeiro e a
outra em seguida, garantindo que nenhum bit seja perdido.

Para o carregamento das instru¢des no processador, ndo utilizamos memoria de
instrugdes na FPGA. Diferente do artigo de referéncia, aplicamos uma maquina de estados
e sinais de controle que comandam o processo de recepcdo e execucdo das instrugdes,
criando um handshake entre a FPGA e a fonte de instrucdes. Apds o envio do estado
inicial do sistema ao processador, a fonte aguarda um sinal de confirmacao da FPGA. Esse
sinal faz com que o processador envie a instrucao, a qual é entdo processada. Quando
a execucao € concluida, o processador envia o resultado provisorio de volta a fonte de
instrucodes, que imediatamente passa a transmissao da proxima instrugdo, isso se repete
até o fim das instrucdes e o envio do estado final para o computador.

4.2.2. Moédulos de integracao e validacao

No controle interno da FPGA, foi necessario implementar maquinas de estado que co-
ordenam as trocas de informacao entre o modulo serial € o médulo de processamento,
evitando perdas ou atrasos.

ApO6s o inicio da transmissdo entre o computador e a FPGA, uma méquina de
estados controla o sincronismo dos moédulos. Quando uma instrucao € recebida, o médulo
serial emite um pulso de aviso indicando dados novos e aguarda um pulso do médulo de
processamento indicando término da ultima instru¢do. Concluida a execugdo, esse pulso
libera 0 médulo serial para enviar a préxima instru¢cdo e atualizar seu registro com o
dado mais recente recebido pela comunicacgdo serial que, por sua vez, espera o término da
execucdo. Isso se repete até o fim das instrugdes e o envio do estado final do sistema de
volta para o computador, como demonstrado na Figura .

Serial Processamento

Figura 10. Diagrama de blocos que representa as maquinas de estado.



5. Resultados

A partir da implementa¢do em FPGA, foram coletados dados de ocupacdo do disposi-
tivo, visando subsidiar trabalhos futuros rumo a escalabilidade da solucdo para suporte a
mais qubits. A andlise concentra-se em trés grandezas principais: ocupacao de elementos
l6gicos, tempo de sintese e tempo de execugao por instrucao.

Area de ocupagdo légica (LUTs) Foram utilizadas 9.404 LUTs no total, sendo
9.074 no mdédulo de processamento e 318 no médulo de comunicagdo serial. Aproxi-
madamente 8.000 LUTs foram dedicadas a implementag¢do das portas quanticas, o que
corresponde a cerca de 6% da capacidade total da FPGA. Considerando a arquitetura
RISC com um conjunto reduzido de portas e instrucdes, o nimero de LUTs deverd cres-
cer principalmente em func¢ido do aumento do nimero de qubits, que ird demandar um
incremento no ndmero de bits dos campos da instrugao.

Tempo médio de sintese A sintese completa do projeto no Quartus II VERSAO
13.0.sp1 levou cerca de 3 minutos em um computador Linux/Windows com processa-
dor athlon 3000g e 16 GB de memdria ram DDR IV. Embora a sintese para um maior
nimero de qubits tenda a crescer de forma quase exponencial devido a complexidade
combinacional, o mesmo ndo vale para o tempo de desenvolvimento, visto que o c6digo
foi parametrizado de modo que a inclusdo de novos qubits dependa apenas da alteracio
de constantes e parametros, permitindo reaproveitamento quase total do design.

Tempo de execugdo por instrucdo Na FPGA, cada instrugado foi executada em um
unico ciclo de clock (50 MHz). Esse desempenho foi alcangado sem o uso de técnicas
de pipeline profundo ou paralelismo adicional. Dessa forma, mesmo com mais qubits,
espera-se que a laténcia por instru¢do se mantenha préxima, jé que no modelo pro-
posto pelo processador dedicado adotado como referéncia neste trabalho, cada operacao
quantica € realizada em paralelo de forma combinacional, aproveitando eficientemente o
tempo de processamento. Apesar do tempo de processamento de cada operagdo na FPGA
demandar apenas o periodo de clock, o gargalo fica a cargo da interface de comunicacao,
que representa uma parcela significativa no tempo total de processamento na solu¢do em
FPGA.

6. Conclusoes

Neste artigo revisitamos uma arquitetura de processador baseada em RISC com capa-
cidade de simular o comportamento de algoritmos quanticos em FPGA, e ampliamos o
conjunto de portas quanticas suportadas para um conjunto de portas quanticas univer-
sais aproximadas. Com o conhecimento absorvido, podemos direcionar esforcos para as
proximas etapas da pesquisa, que sao ampliar o nimero de qubits suportados e adicionar
suporte a portas de coeficientes arbitrarios para alcancar um conjunto universal exato.

Os desafios enfrentados em grande parte das solucdes existentes para simulacao
de algoritmos quanticos em hardware estdo atrelados principalmente a trés fatores: o
crescimento exponencial no nimero de LUTs utilizadas conforme aumenta o nimero
de qubits no sistema; o crescimento exponencial no tempo médio de sintese pelo mesmo
motivo; e a necessidade de grandes modificagdes no cédigo HDL para alterar o nimero de
qubits suportados e o tamanho da mantissa [Aminian et al. 2008], [Negovetic et al. 2002],
[Khalid et al. 2004].



A arquitetura adotada demonstra a obtencdo de ganhos consideraveis tanto no uso
de LUTs quanto no tempo de sintese, pelo fato de ser programével. Como a aplicagdo de
cada porta € andloga a execu¢do de uma instru¢do, o tempo necessario para a execugao
de um algoritmo quantico € linear e proporcional ao nimero de portas que ele utiliza.
Com essa solucao, uma nova sintese s6 ¢ demandada quando hé alteracdo do nimero de
qubits ou do tamanho da mantissa empregados pelo sistema. Além disso, o c6digo imple-
mentado encontra-se parametrizado, de maneira que a maior parte do c6digo HDL pode
ser reaproveitado em expansoes futuras de escala ou precisdo, exigindo apenas pequenas
modificagdes em constantes e parametros predefinidos.

Para trabalhos futuros, consideramos expandir a implementagdo para suportar um
nimero maior de qubits e realizar testes com alguns algoritmos quanticos conhecidos.
Além disso, planejamos substituir a comunicacao via RS-232 por outras de maior velo-
cidade, como a USB ou PClI-e, e assim aumentar a taxa de transferéncia de dados. O
objetivo € avaliar a solu¢do completa como estrutura de co-processamento, usada como
alternativa a simulacdo sequencial em software, preferencialmente integrada a alguma
plataforma popular de simulacio de algoritmos quanticos.
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