
Revisitando e adicionando portas a um processador dedicado
à simulação de algoritmos quânticos em hardware

Pedro J. Silveira1, Breno S. Nascimento1, Calebe M. Conceição1, Rodolfo B. Garcia1

1Departamento de Computação (DCOMP) – Universidade Federal de Sergipe (UFS)
Av. Marechal Rondon, – Jardim Rosa Elze – CEP 49100-000

São Cristóvão – SE – Brazil

pedro.silveira@dcomp.ufs.br, breno.nascimento@dcomp.ufs.br

calebe@dcomp.ufs.br, rodolfo.botto@dcomp.ufs.br

Abstract. Current approaches to implementing quantum-algorithm simulations
in hardware suffer from performance and complexity issues. In this article, we
revisit an FPGA implementation of a dedicated 3-qubit processor that supports
the S gate, T gate, Hadamard gate, Pauli-X gate, CNOT gate, and Toffoli gate.
The proposed architecture combines high performance with design simplicity
by enabling the efficient simulation of a quantum circuit’s behavior through a
programmable, RISC-inspired model. This eliminates the need to re-synthesize
the design, reduces potential errors, and overcomes some of the limitations of
existing solutions. Such an approach could represent a viable alternative for the
development and validation of new quantum-based systems.

Resumo. As atuais abordagens para implementação de simulação algoritmos
quânticos em hardware sofrem de problemas relacionados a desempenho e com-
plexidade. Neste artigo, revisitamos uma implementação em FPGA de um pro-
cessador dedicado de 3 qubits para dar suporte às portas quânticas Sgate,
Tgate, Hadamard, Paulix, CNOT, e Toffoli. A arquitetura proposta alia alto de-
sempenho à simplicidade de projeto, já que permite simular o comportamento
de um circuito quântico de forma eficiente com um modelo programável inspi-
rado na arquitetura RISC, eliminando a necessidade de re-sı́ntese do modelo,
reduzindo possı́veis erros e algumas limitações de outras soluções existentes.
Tal abordagem pode representar uma alternativa viável ao desenvolvimento e
validação de novas soluções baseadas em sistemas quânticos.

1. Introdução
A computação quântica se destaca como uma das tecnologias emergentes mais promisso-
ras da Computação, pois sua natureza exponencial confere a ela a capacidade de resolver
alguns problemas intratáveis para sistemas clássicos [Feynman 1986]. No entanto, essa
mesma caracterı́stica impõe limitações fı́sicas à simulação de sistemas quânticos em ar-
quiteturas clássicas, o que dificulta sua escalabilidade [Maron et al. 2013].

Por outro lado, dispositivos reconfiguráveis oferecem a flexibilidade necessária
para simular um ambiente quântico com baixa latência, pipelines configuráveis e alto
grau de paralelismo. Assim, as FPGAs surgem como uma plataforma promissora para
essa tarefa [Fujishima et al. 2003] [Khalid et al. 2004]. Neste trabalho, apresentamos o

projeto em SystemVerilog de seis portas elementares (S, T, Hadamard, Pauli-X, Toffoli e
CNOT) em um processador dedicado, a sua sı́ntese em FPGA e uma comparação entre os
resultados de simulação para (ModelSim) e a execução na placa-alvo.

Propõe-se esse conjunto de portas como um aprimoramento de uma solução inspi-
rada na arquitetura RISC para a simulação de um processador quântico em FPGA apresen-
tada em [Conceição and Reis 2015]. O design utiliza um conjunto reduzido de instruções
com formato uniforme, garantindo baixa latência e escalabilidade. Além disso, a estrutura
parametrizada permite a integração de pipelines mais complexos, explorando o alto grau
de paralelismo inerente às FPGAs.

Como metodologia de implementação e validação,são utilizadas duas abordagens:
em hardware, na FPGA Cyclone IV DE2i-150, e em software, no ModelSim. Além
disso, como ambiente de teste e verificação funcional, foi adotada uma abordagem de
alta diversidade na geração de vetores de teste, usando números aleatórios para cada porta
quântica. Mapeamos os sinais de entrada e saı́da e acompanhamos suas variações ao longo
do tempo, confirmando que cada porta operava em um único ciclo de clock e produzia
resultados conforme o esperado.

2. Fundamentação Teórica

A computação quântica possui como principal e mais básica unidade de informação o
qubit. O qubit pode assumir os valores |0⟩, |1⟩ ou uma superposição de ambos, sendo |0⟩
e |1⟩ vetores bidimensionais de números complexos[Nielsen and Chuang 2000]. Sistemas
com mais de um qubit podem ser representados por uma combinação linear dos vetores
que correspondem aos possı́veis estados nos quais o sistema pode colapsar:

|ψ⟩ = α0 |00 · · · 0⟩ + α1 |00 · · · 1⟩ + . . . + α2n−1 |11 · · · 1⟩ ,

de modo que o número de componentes seja igual a 2n, sendo n o número de qubits do
sistema. Utilizando essa propriedade, podemos criar uma estrutura de dados chamada
quantum register, que representa o sistema quântico apenas armazenando os valores dos
coeficientes αi e abstraindo a representação explı́cita de cada componente.

Os algoritmos quânticos são, basicamente, uma sequência de portas quânticas
aplicadas ao sistema de forma sequencial, alterando seu estado [Shor 1994]. Essas portas
quânticas podem ser representadas por matrizes quadradas e, ao multiplicarmos o vetor
que representa o estado do sistema por uma matriz que representa uma porta, obtemos o
resultado da aplicação dessa porta quântica. Assim, podemos representar os algoritmos
quânticos como uma sequência de multiplicações de matrizes pelos vetores componentes
do sistema.

Apesar de um sistema quântico poder assumir diversos valores ao mesmo tempo
em razão do fenômeno da superposição, apenas um valor é obtido como saı́da durante a
medição. Em resumo, os algoritmos quânticos têm como objetivo, por meio da aplicação
das portas quânticas, manipular essas probabilidades de forma a garantir que, ao medir o
sistema, o valor colapsado seja o desejado. Essa manipulação baseia-se na propriedade

2n−1∑
i=0

|αi|2 = 1,

ou seja, a soma dos quadrados dos módulos dos coeficientes que multiplicam as compo-
nentes do vetor-estado deve ser igual a 1 [Nielsen and Chuang 2000]. Dessa forma, os
algoritmos quânticos utilizam a manipulação dos coeficientes para que a probabilidade de
o sistema colapsar no estado desejado durante a observação seja a maior possı́vel.

3. Arquitetura

Como os algoritmos quânticos funcionam aplicando portas quânticas sequencialmente a
um sistema , são adotadas para a arquitetura proposta um formato de instrução que arma-
zena apenas os ı́ndices dos qubits afetados e o código da operação. Para tanto, o formato
de instrução é estruturado em quatro campos: target, ctrl0, ctrl1 e opcode. Os campos tar-
get, ctrl0 e ctrl1 representam, respectivamente, os ı́ndices dos qubits sobre o qual a porta
será aplicada, enquanto o opcode identifica qual porta quântica será executada, conforme
ilustrado na figura 1.

Figura 1. Formato de instrução (N número de qubits, M número de portas).

Para viabilizar a representação de um sistema quântico em hardware, são emprega-
das duas estruturas de dados: quantum register e complex. O complex é uma representação
de número complexo em 32 bits (16 bits para parte real e 16 bits para parte imaginária),
ambos em ponto fixo 8 : 8. Já o quantum register é um vetor de 2n elementos do tipo
complex, onde n é o número de qubits; cada elemento corresponde ao coeficiente que mul-
tiplica uma das componentes do vetor-estado. Durante a execução, aplica-se uma porta
de cada vez sobre o quantum register; ao finalizar uma instrução, a próxima é executada.

Figura 2. diagrama de blocos da arquitetura. (Fonte: [Conceição and Reis 2015])

3.1. Operação das Portas

A arquitetura é do tipo SIMD (Single Instruction Multiple Data) para realização das
operações: cada instrução é aplicada a múltiplos dados simultaneamente, controlados
pelos campos target, ctrl0 e ctrl1 por meio da ação de multiplexadores. Todas as portas
recebem um quantum register e retornam outro quantum register. Na prática, o sistema
consiste em uma memória única realimentada. A memória contém os dados dos coefici-
entes do quantum register, e é realimentada a cada ciclo com o resultado da parte com-
binacional que implementa as portas quânticas, controladas por uma unidade de controle
que ativa o caminho de dados. Multiplexadores, multiplicadores e somadores de números
complexos simulam o comportamento de cada porta.

As portas Toffoli, Pauli-X e CNOT são implementadas sobretudo com multiple-
xadores. Ao aplicar Pauli-X em um único qubit, invertemos os coeficientes |0⟩ ↔ |1⟩.
Em um sistema de três qubits, o comportamento é mostrado na Fig. 3. A porta Toffoli só
troca ı́ndices quando ambos os bits de controle (ctrl1 e ctrl0) são 1. A porta CNOT só
leva em conta o controle ctrl0, invertendo o alvo se este for 1, como ilustrao na Figura 4 .

Figura 3. Comportamento da porta Pauli-X em 3 qubits.

Figura 4. Comportamento da porta CNOT.

Já para as portas de fase (Hadamard, S-gate e T-gate), somadores e multiplica-
dores de números complexos são combinados aos multiplexadores. A porta Hadamard,
quando aplicada a um qubit em seu estado base, cria um estado de superposição entre
os componentes do vetor de estado, fazendo com que a probabilidade de colapso em
qualquer um dos resultados seja igual, conforme exemplificado na Figura 5. Já a S-gate
multiplica por i = eiπ/2 os componentes |1⟩ do qubit alvo, como mostrado na figura 6,
gerando uma rotação de fase de π/2 (90°). De forma análoga, a T-gate multiplica por
eiπ/4 os componentes |1⟩ do qubit alvo, correspondendo a uma rotação de fase de π/4
(45°), como mostrado na figura 7 e 8.

Figura 5. Comportamento da porta Hadamard.

Figura 6. Comportamento da S-gate (π/2 de fase).

Figura 7. Exemplo da S-gate na esfera de bloch (π/2 de fase).

Figura 8. Exemplo da T-gate na esfera de bloch (π/4 de fase).
.

4. Validação da arquitetura
Para assegurar a validade da implementação proposta, foram realizadas rotinas de
verificação funcional por simulação, e prototipação em hardware na placa FPGA DE2i-

150. Ambas as etapas são descritas em detalhes a seguir.

4.1. Verificação Funcional

A verificação funcional do processador foi realizada com o software ModelSim. Adotou-
se uma abordagem em duas etapas, testando separadamente o Módulo Serial e o Módulo
de Processamento.

No teste do Módulo Serial, o objetivo principal foi verificar se a máquina de es-
tados, a decodificação das instruções e os sinais de controle funcionavam conforme o
esperado. Para isso, entradas aleatórias foram aplicadas ao módulo a uma frequência
igual à utilizada na integração com a placa de desenvolvimento. Em seguida, os sinais de
saı́da e os pulsos de controle gerados foram comparados com os resultados previstos.

Já na verificação do Módulo de Processamento, avaliou-se o comportamento
das máquinas de estados e a correção das operações realizadas pela ULA. Durante
a simulação, foram usados vetores de entrada selecionados para exercitar as portas
quânticas em condições normais e extremas, garantindo a estabilidade e a robustez do
circuito.

4.2. Validação em FPGA

Na validação em FPGA, a principal preocupação foi a propagação correta das instruções
dentro do processador e a comunicação com a estação de trabalho. Para isso, aplicaram-se
sequências curtas de instruções em diferentes baud rates, com o objetivo de assegurar que
os dados transitavam corretamente por todo o sistema.

Com a utilização de um clock de 50 MHz e um baud rate de 115 200 bps, os
resultados foram conforme o esperado, tanto os resultados finais quanto os resultados
intermediários.

4.2.1. Comunicação com a estação de trabalho

Para a comunicação entre a FPGA e a fonte de instruções, foi escolhida a especificação
serial RS-232. Essa especificação baseia-se em comunicação assı́ncrona, transmitindo
8 bits de informação, 1 bit de inı́cio e 1 bit de parada. A transmissão é feita por duas
linhas principais: TXD, responsável pela transmissão do sinal, e RXD, responsável pelo
recebimento do sinal. A velocidade de comunicação é definida pelo baud rate, que na
FPGA de teste foi configurado em 115200 bps.

Figura 9. Formato de envio e recebimento no RS-232.

Como o RS-232 suporta apenas 8 bits por quadro e a instrução da arquitetura exige
9 bits (3 do opcode, 2 do target, 2 do ctrl0 e 2 do ctrl1), foi necessário implementar uma
máquina de estados no módulo serial para controlar o envio e o recebimento sem perdas.
Essa máquina divide cada instrução em duas partes, enviando uma metade primeiro e a
outra em seguida, garantindo que nenhum bit seja perdido.

Para o carregamento das instruções no processador, não utilizamos memória de
instruções na FPGA. Diferente do artigo de referência, aplicamos uma máquina de estados
e sinais de controle que comandam o processo de recepção e execução das instruções,
criando um handshake entre a FPGA e a fonte de instruções. Após o envio do estado
inicial do sistema ao processador, a fonte aguarda um sinal de confirmação da FPGA. Esse
sinal faz com que o processador envie a instrução, a qual é então processada. Quando
a execução é concluı́da, o processador envia o resultado provisório de volta à fonte de
instruções, que imediatamente passa à transmissão da próxima instrução, isso se repete
até o fim das instruções e o envio do estado final para o computador.

4.2.2. Módulos de integração e validação

No controle interno da FPGA, foi necessário implementar máquinas de estado que co-
ordenam as trocas de informação entre o módulo serial e o módulo de processamento,
evitando perdas ou atrasos.

Após o inı́cio da transmissão entre o computador e a FPGA, uma máquina de
estados controla o sincronismo dos módulos. Quando uma instrução é recebida, o módulo
serial emite um pulso de aviso indicando dados novos e aguarda um pulso do módulo de
processamento indicando término da última instrução. Concluı́da a execução, esse pulso
libera o módulo serial para enviar a próxima instrução e atualizar seu registro com o
dado mais recente recebido pela comunicação serial que, por sua vez, espera o término da
execução. Isso se repete até o fim das instruções e o envio do estado final do sistema de
volta para o computador, como demonstrado na Figura .

Figura 10. Diagrama de blocos que representa as maquinas de estado.

5. Resultados

A partir da implementação em FPGA, foram coletados dados de ocupação do disposi-
tivo, visando subsidiar trabalhos futuros rumo à escalabilidade da solução para suporte a
mais qubits. A análise concentra-se em três grandezas principais: ocupação de elementos
lógicos, tempo de sı́ntese e tempo de execução por instrução.

Área de ocupação lógica (LUTs) Foram utilizadas 9.404 LUTs no total, sendo
9.074 no módulo de processamento e 318 no módulo de comunicação serial. Aproxi-
madamente 8.000 LUTs foram dedicadas à implementação das portas quânticas, o que
corresponde a cerca de 6% da capacidade total da FPGA. Considerando a arquitetura
RISC com um conjunto reduzido de portas e instruções, o número de LUTs deverá cres-
cer principalmente em função do aumento do número de qubits, que irá demandar um
incremento no número de bits dos campos da instrução.

Tempo médio de sı́ntese A sı́ntese completa do projeto no Quartus II VERSÃO
13.0.sp1 levou cerca de 3 minutos em um computador Linux/Windows com processa-
dor athlon 3000g e 16 GB de memória ram DDR IV. Embora a sı́ntese para um maior
número de qubits tenda a crescer de forma quase exponencial devido à complexidade
combinacional, o mesmo não vale para o tempo de desenvolvimento, visto que o código
foi parametrizado de modo que a inclusão de novos qubits dependa apenas da alteração
de constantes e parâmetros, permitindo reaproveitamento quase total do design.

Tempo de execução por instrução Na FPGA, cada instrução foi executada em um
único ciclo de clock (50 MHz). Esse desempenho foi alcançado sem o uso de técnicas
de pipeline profundo ou paralelismo adicional. Dessa forma, mesmo com mais qubits,
espera-se que a latência por instrução se mantenha próxima, já que no modelo pro-
posto pelo processador dedicado adotado como referência neste trabalho, cada operação
quântica é realizada em paralelo de forma combinacional, aproveitando eficientemente o
tempo de processamento. Apesar do tempo de processamento de cada operação na FPGA
demandar apenas o perı́odo de clock, o gargalo fica a cargo da interface de comunicação,
que representa uma parcela significativa no tempo total de processamento na solução em
FPGA.

6. Conclusões

Neste artigo revisitamos uma arquitetura de processador baseada em RISC com capa-
cidade de simular o comportamento de algoritmos quânticos em FPGA, e ampliamos o
conjunto de portas quânticas suportadas para um conjunto de portas quânticas univer-
sais aproximadas. Com o conhecimento absorvido, podemos direcionar esforços para as
próximas etapas da pesquisa, que são ampliar o número de qubits suportados e adicionar
suporte a portas de coeficientes arbitrários para alcançar um conjunto universal exato.

Os desafios enfrentados em grande parte das soluções existentes para simulação
de algoritmos quânticos em hardware estão atrelados principalmente a três fatores: o
crescimento exponencial no número de LUTs utilizadas conforme aumenta o número
de qubits no sistema; o crescimento exponencial no tempo médio de sı́ntese pelo mesmo
motivo; e a necessidade de grandes modificações no código HDL para alterar o número de
qubits suportados e o tamanho da mantissa [Aminian et al. 2008], [Negovetic et al. 2002],
[Khalid et al. 2004].

A arquitetura adotada demonstra a obtenção de ganhos consideráveis tanto no uso
de LUTs quanto no tempo de sı́ntese, pelo fato de ser programável. Como a aplicação de
cada porta é análoga à execução de uma instrução, o tempo necessário para a execução
de um algoritmo quântico é linear e proporcional ao número de portas que ele utiliza.
Com essa solução, uma nova sı́ntese só é demandada quando há alteração do número de
qubits ou do tamanho da mantissa empregados pelo sistema. Além disso, o código imple-
mentado encontra-se parametrizado, de maneira que a maior parte do código HDL pode
ser reaproveitado em expansões futuras de escala ou precisão, exigindo apenas pequenas
modificações em constantes e parâmetros predefinidos.

Para trabalhos futuros, consideramos expandir a implementação para suportar um
número maior de qubits e realizar testes com alguns algoritmos quânticos conhecidos.
Além disso, planejamos substituir a comunicação via RS-232 por outras de maior velo-
cidade, como a USB ou PCI-e, e assim aumentar a taxa de transferência de dados. O
objetivo é avaliar a solução completa como estrutura de co-processamento, usada como
alternativa à simulação sequencial em software, preferencialmente integrada a alguma
plataforma popular de simulação de algoritmos quânticos.

Referências
Aminian, M., Saeedi, M., Zamani, M. S., and Sedighi, M. (2008). Fpga-based circuit

model emulation of quantum algorithms. In 2008 IEEE Computer Society Annual
Symposium on VLSI, pages 399–404.

Conceição, C. and Reis, R. (2015). Efficient emulation of quantum circuits on classi-
cal hardware. In 2015 IEEE 6th Latin American Symposium on Circuits & Systems
(LASCAS), pages 1–4.

Feynman, R. P. (1986). Quantum mechanical computers. Found. Phys., 16(6):507–532.

Fujishima, M., Saito, K., and Hoh, K. (2003). 16-qubit quantum-computing emulation
based on high-speed hardware architecture. Japanese Journal of Applied Physics,
42(4S):2182.

Khalid, A. U., Zilic, Z., and Radecka, K. (2004). Fpga emulation of quantum circuits. In
IEEE International Conference on Computer Design: VLSI in Computers and Proces-
sors, 2004. ICCD 2004. Proceedings., pages 310–315. IEEE.

Maron, A., Reiser, R., and Pilla, M. (2013). High-performance quantum computing si-
mulation for the quantum geometric machine model. In 2013 13th IEEE/ACM Inter-
national Symposium on Cluster, Cloud, and Grid Computing, pages 474–481. IEEE.

Negovetic, G., Perkowski, M., Lukac, M., and Buller, A. (2002). Evolving quantum
circuits and an fpga-based quantum computing emulator.

Nielsen, M. A. and Chuang, I. L. (2000). Quantum information and quantum computation.
Cambridge: Cambridge University Press, 2(8):23.

Shor, P. (1994). Algorithms for quantum computation: discrete logarithms and factoring.
In Proceedings 35th Annual Symposium on Foundations of Computer Science, pages
124–134.

