
Validando em FPGA um Core RISC-V dedicado
à Simulação de Circuitos Quânticos

Thiago Andrade 1, Breno Nascimento 2, Calebe Conceição 3, Rodolfo Garcia 4

1Departamento de Computação – Universidade Federal de Sergipe (UFS)
Av. Marechal Rondon, s/n – Jardim Rosa Elze – CEP 49100-000

São Cristóvão – Sergipe – Brasil

thiago.andrade@dcomp.ufs.br,breno.nascimento@dcomp.ufs.br

calebe@dcomp.ufs.br, rodolfo.botto@dcomp.ufs.br

Abstract. The cost of developing a quantum computer is currently high. In this
context, this article aims to describe the processes and results of research focu-
sed on developing a RISC-V core dedicated to quantum circuit simulation. The
adopted methodology involved simplifying the Tiny RISC-V processor and con-
ducting tests and validations on a Field-Programmable Gate Array (FPGA). The
results are promising, indicating the feasibility of instantiating multiple cores to
explore parallelism to perform quantum circuits simulation, as an alternative to
GPU simulation.

Resumo. O custo para o desenvolvimento de um computador quântico é alto
nos dias atuais. Nesse contexto, este artigo tem como objetivo descrever os pro-
cessos e resultados de uma pesquisa voltada ao desenvolvimento de um núcleo
RISC-V dedicado à simulação de circuitos quânticos. A metodologia adotada
envolveu a simplificação do processador Tiny RISC-V e a realização de testes
de desempenho em um Arranjo de Portas Programáveis em Campo (FPGA).
Os resultados obtidos são promissores, indicando a viabilidade de instanciar
múltiplos cores para explorar o paralelismo para realizar a simulação de cir-
cuitos quânticos, como uma alternativa à simulação em GPU.

1. Intrudução

Em 2007, a empresa D-Wave Systems apresentou o primeiro protótipo funcional de
computador quântico. Posteriormente, lançou em 2011 o D-Wave One, considerado o
primeiro computador quântico comercial disponı́vel no mercado [Nunes 2016]. Esse
lançamento aguçou o interesse de grandes empresas de computação, como Google e
IBM, que hoje perseguem o domı́nio da tecnologia que promete avanços na realização de
cálculos complexos com significativa maior eficiência em comparação aos computadores
tradicionais. No entanto, a adoção dessa tecnologia ainda enfrenta desafios importantes,
especialmente os relacionados ao custo de acesso. Segundo o site Spinquanta, O compu-
tador quântico mais barato do mundo é 2-qubit Portable NMR Quantum Computer que
custa de 8700 a 9000 dólares [SpinQuanta 2024] e computadores quânticos supercondu-
tores podem chegar a 50 milhões de dólares [SpinQuanta 2025], além de demandarem
grande espaço fı́sico e apresentarem dificuldades de alocação, o que limita seu acesso a
instituições de ensino e pesquisa.

Diante desse cenário, surge a necessidade de soluções mais acessı́veis para explo-
rar a computação quântica. A simulação é um caminho ainda necessário, mas enfrenta
desafios de eficiência,, tendo em vista a demanda exponencial de recursos computacio-
nais que implicam em maior tempo de execução. Soluções paralelas apresentam-se como
promissoras neste sentido, como aquelas baseadas em GPUs. O objetivo deste trabalho
é o desenvolvimento de um core RISC-V — uma unidade de processamento baseada
na arquitetura de conjunto de instruções RISC-V — dedicada à simulação de circuitos
quânticos, com foco na investigação sobre impactos na economia de recursos lógicos e na
redução do custo de implementação.

Este artigo está organizado da seguinte forma:a Seção 2 relaciona o trabalho a ou-
tros existentes; a Seção 3 apresenta a fundamentação teórica sobre computação quântica
e a arquitetura RISC-V; a Seção 4 descreve os métodos e ferramentas utilizados no desen-
volvimento do projeto; a Seção 5 discute os Experimentos realizados; a Seção 6 discute os
resultados obtidos; e, por fim, a Seção 7 apresenta as conclusões e propostas de trabalhos
futuros.

2. Trabalhos Relacionados
O RISC-V é uma instruction set architecture (ISA) open-source e livre de royalties,
caracterizada por sua modularidade e extensibilidade, o que viabiliza adaptações para
aplicações especı́ficas. A literatura sobre o tema é extensa, como exemplificado por
[Cui et al. 2023], que apresenta um mapeamento das principais pesquisas relacionadas ao
uso de extensões na arquitetura. O estudo evidencia sua ampla adoção em microprocessa-
dores embarcados, processadores de domı́nio especı́fico e sistemas de alto desempenho,
abordando extensões privilegiadas e não privilegiadas.

Entre os trabalhos aplicados, [Zhao et al. 2023] utiliza a extensão vetorial em al-
goritmos de criptografia pós-quântica, enquanto [Zhao et al. 2022] propõe uma extensão
customizada para operações matriciais voltadas a aplicações criptográficas. De forma
complementar, [Wang et al. 2024] demonstra os ganhos de desempenho proporcionados
por extensões customizadas. Em contraste, neste trabalho optamos por não empregar ex-
tensões adicionais, com o objetivo de reduzir o número de operadores lógicos e otimizar
o uso dos recursos de hardware.

Um trabalho relacionado é apresentado por [Gebauer et al. 2021], que descreve
um firmware modular em FPGA para controle de qubits supercondutores. Cada célula
digital integra um núcleo RISC-V com um sequenciador, dois geradores de sinal e um
registrador, comunicando-se por um barramento Wishbone modificado. A ISA utilizada
inclui o conjunto base, extensões de multiplicação e uma extensão customizada para se-
quenciamento. Em nosso projeto, por outro lado, eliminamos inclusive as instruções
básicas da ISA RISC-V, buscando minimizar a complexidade lógica do processador.

3. Fundamentação Teórica
Este trabalho concentra esforços em desenvolver um core RISC-V dedicado à simulação
de circuitos quânticos. Sendo assim, é necessário apresentar a fundamentação sobre
simulação de sistemas quânticos que se apresentam como requisitos para o core proposto,
bem como as caracterı́sticas da arquitetura RISC-V e o modelo de referência a partir do
qual a customização proposta foi elaborada.

3.1. Simulação de circuitos quânticos

Diferentemente da computação clássica, na qual cada bit pode assumir apenas os estados
discretos 0 ou 1, na computação quântica um bit quântico (ou qubit) é descrito como
uma combinação linear desses dois estados base de um espaço vetorial complexo. Desse
modo, um qubit possui coeficientes complexos associados a cada um dos estados base |0⟩
e |1⟩.

Figura 1. Comparação entre bits clássicos e qubits. Fonte: [NLP 2023]

A notação bra-ket, introduzida por Paul Dirac, permite representar de forma clara
as amplitudes e funções de onda dos estados quânticos. Essa notação é vantajosa por pos-
sibilitar a descrição de estados quânticos como vetores coluna em um espaço de Hilbert,
simplificando o arcabouço matemático que descreve o sistema computacional quântico.
[Nielsen and Chuang 2010]. Uma operação em um sistema quântico isolado pode ser des-
crita como uma multiplicação de matriz unitária U pelo vetor de estado |ψ⟩ que representa
o sistema, representada na notação de Dirac como U |ψ⟩.

Um algoritmo quântico nada mais é do que a aplicação dessas transformações
unitárias sobre o vetor de estado de forma sequencial e controlada para obter um resul-
tado previsı́vel. Uma forma de representar um algoritmo quântico é por meio de um
circuito quântico, como o exemplificado na Figura 2. As linhas correspondem aos qubits,
as operações são representadas pelas caixas, cuja disposição da esquerda para a direita
representa a ordem em que são realizadas. Algumas operações são aplicadas sobre mais
de um qubit.

Figura 2. Exemplo de Circuito Quântico com Operações Básicas de
Superposição e Controle.

A cada passo do algoritmo quântico é necessário expandir a operação matricial
que é realizada sobre todos os qubits como uma combinação por produto Kronecker da
matriz da porta quântica aplicada naquele instante com a operação identidade que é apli-
cada sobre os qubits que não sofrem a operação. Em um sistema com N qubits, a matriz
de operação resultante é uma matriz quadrada complexa de dimensão 2N . Uma forma
de realizar a simulação de um dado algoritmo é computando a sequência encadeada das

multiplicações matriciais correspondentes a cada passo. Nesse contexto, o desafio com-
putacional reside no incremento exponencial que a adição de um único qubit no sistema
impacta na dimensão dessas matrizes.

3.2. O processador Tiny RISC-V

Para compreender o contexto do trabalho proposto, é fundamental compreender a arqui-
tetura RISC-V, em especial a versão do processador Tiny RISC-V. Trata-se de um pro-
cessador de pequeno porte e baixa complexidade, projetado para fins educacionais e de
pesquisa, servindo como uma plataforma acessı́vel ao estudo de arquiteturas de proces-
sadores. O Tiny RISC-V adota a arquitetura RISC-V e oferece suporte ao conjunto de
instruções RV32I, correspondente ao núcleo de instruções inteiras de 32 bits. Ele utiliza
um barramento de memória do tipo Harvard, no qual as memórias de instrução e de da-
dos são separadas, permitindo acessos simultâneos e independentes e não há suporte a
operações de ponto flutuante.

Sua arquitetura pode ser implementada em diferentes configurações — ciclo
único, multiciclo ou com suporte a pipeline — de acordo com a complexidade desejada
no projeto. Em termos de componentes, o processador é composto por uma unidade de
controle, um banco de registradores, uma unidade lógico-aritmética (ULA), um contador
de programa (PC), memória de instruções e memória de dados. A interação entre esses
elementos se dá por meio de um datapath, conforme ilustrado na Figura 3.

Figura 3. Diagrama estrutural do processador Tiny RISC-V. Fonte:
[Hushon 2020].

O processador opera com instruções de 32 bits, divididas em campos es-
pecı́ficos: Opcode (identifica a operação), campos de registradores (especificam os
registradores-fonte e destino), campos de função (refinam a operação) e campos ime-
diatos (valores constantes utilizados em operações aritméticas ou de endereçamento)
[Patterson and Hennessy 2017]. Esses campos são decodificados pela unidade de con-
trole, que gera sinais para seleção da operação na ULA (que realiza operações aritméticas
como soma, subtração, e lógica como AND, OR, XOR, NOT), ativação da escrita no
banco de registradores e controle de acesso à memória (load/store).

Conforme descrito em [John 2017], as instruções são organizadas em categorias
de acordo com os sinais de controle exigidos e os componentes lógicos envolvidos. A

arquitetura RISC-V define seis categorias principais de instruções em sua implementação
básica (RV32I), agrupadas em dois blocos funcionais:

Instruções de Núcleo

• Tipo R (Register-Register): operações aritméticas e lógicas entre registradores,
como adição e operações booleanas.

• Tipo I (Immediate): operações com registrador e valor imediato, incluindo aces-
sos à memória (loads) e saltos relativos.

• Tipo S (Store): operações de armazenamento em memória, calculando o endereço
a partir da soma entre um registrador base e um deslocamento imediato.

• Tipo U (Upper Immediate): manipulação de constantes e endereços, inserindo
valores de 20 bits nos bits mais significativos do registrador.

Instruções de Controle de Fluxo

• Tipo B (Branch): desvios condicionais baseados em comparações entre registra-
dores, com deslocamento relativo.

• Tipo J (Jump): saltos incondicionais de longo alcance, úteis para chamadas de
função e retornos.

As informações contidas na instrução de 32 bits são interpretadas de forma com-
binacional, de acordo com o opcode, conforme ilustrado na Tabela 1.

Tabela 1. Formatos das instruções base do RISC-V conforme apresentado em
[Harris and Harris 2021].

Formato 31–25 24–20 19–15 14–12 11–7 6–0
R-type func7 rs2 rs1 func3 rd opcode
I-type imm[11:0] rs1 func3 rd opcode
S-type imm[11:5] rs2 rs1 func3 imm[4:0] opcode
B-type imm[12—10:5] rs2 rs1 func3 imm[4:1—11] opcode
U-type imm[31:12] rd opcode
J-type imm[20—10:1—11—19:12] rd opcode

4. Metodologia
Nesta pesquisa, investiga-se a viabilidade de implementar uma customização do Tiny
RISC-V que mantém apenas as estruturas que dão suporte às operações de multiplicação
de matrizes necessárias à simulação de algoritmos quânticos descritos no modelo de cir-
cuitos.

A primeira etapa da pesquisa consiste em selecionar quais operações são ne-
cessárias à multiplicação de matrizes. Para isso, foi implementado em C um código para
multiplicação de matriz, esse que pode ser observado abaixo, e analisado seu código as-
sembly do RISC-V gerado por meio da compilação usando o compilador GCC (GNU
Compiler Collection) com o comando gcc -S mulmatrizes.c. O código gerado
foi então refinado com o auxı́lio do simulador RARS – RISC-V Assembler and Runtime
Simulator – , com o objetivo de reduzir ao máximo o conjunto de instruções necessárias,
mantendo a funcionalidade. Neste estudo, verificou-se que era necessário manter apenas
o suporte a instruções dos tipos R, I e S na arquitetura.

A segunda etapa consistiu na customização da arquitetura do Tiny RISC-V. Para
realizar simulação funcional, foi usado o suporte do simulador Icarus Verilog e do vi-
sualizador de forma de onda GTKwave, visando à eliminação dos componentes lógicos
dedicados ao processamento das instruções dos tipos U, B e J. O objetivo é avaliar o im-
pacto no desempenho e na complexidade do circuito, e quantificar os ganhos em termos de
elementos lógicos necessários à implementação da arquitetura. Com isso, almeja-se rea-
lizar uma avaliação inicial do custo-benefı́cio para o desenvolvimento de um processador
dedicado, em aprofundamentos futuros.

vector<vector<float>> multiplicarMatrizes(const vector<vector<
float>>& A, const vector<vector<float>>& B) {
int linhasA = A.size(), colunasA = A[0].size(), colunasB = B

[0].size();
vector<vector<float>> resultado(linhasA, vector<float>(

colunasB, 0.0f));
for (int i = 0; i < linhasA; i++)

for (int j = 0; j < colunasB; j++)
for (int k = 0; k < colunasA; k++)

resultado[i][j] += A[i][k] * B[k][j];
return resultado;

}
...

5. Experimentos realizados
O Tiny RISC-V customizado no contexto deste trabalho apresenta as seguintes carac-
terı́sticas fundamentais:

• Banco de 32 registradores de propósito geral
• Arquitetura Harvard modificada com:

– Memória de instruções (ROM)
– Memória de dados (RAM)

• Módulo de memória unificado com portas diferenciadas por função
• Suporte completo ao conjunto de instruções RV32I

5.1. Implementação Inicial

Desenvolvemos um algoritmo em assembly RISC-V utilizando exclusivamente instruções
dos tipos:

• R: Operações registrador-registrador
• I: Operações com imediato
• S: Armazenamento em memória

Este código implementa multiplicação matricial com entrada direta por meio de
um computador hospedeiro, conforme ilustrado na Figura 5.

5.2. Otimização da Arquitetura

Foram realizadas simplificações no processador base Tiny RISC-V por meio da remoção
dos circuitos dependentes das instruções dos tipos U, B e J. Essas modificações foram

Figura 4. Fornecimento de dados do computador hospedeiro para o processa-
dor.

implementadas por meio de alterações no código-fonte no Visual Studio Code, especial-
mente nas lógicas de multiplexação presentes na Unidade Lógica Aritmética (ULA), na
Unidade de Controle Principal, no Contador de Programas (PC) e no Caminho de Da-
dos (Datapath), que originalmente dependiam dessas instruções. Por exemplo, no Tiny
RISC-V original.

Por exemplo:

assign NXTPC = (˜RSTn)? 0 : (Jump)? ((JALorJALR)? JALRAddress :
JALAddress) : ((BranchTaken)? BranchTarget : PC+4);

Essa era a linha responsável por controlar qual seria o próximo valor atribuı́do ao
Contador de Programas. Como pode ser observado, havia diversos sinais dependentes das
operações do tipo B e J. Na nossa versão final, removemos a dependência do processador
em relação a esses sinais que eram atribuı́dos na Unidade de controle.

assign NXTPC = (˜RSTn)? 0 : (PC+4);

5.3. Validação em FPGA

Para a validação em FPGA, foi implementado um sistema completo baseado em um pro-
cessador RISC-V personalizado com interface serial RS-232, conforme detalhado na Fi-
gura 5. Esta arquitetura integra três componentes principais: o núcleo de processamento
RISC-V, o controlador serial dedicado e a interface de comunicação com o computador
hospedeiro.

Essa implementação utiliza comunicação RS-232, um padrão de comunicação
serial assı́ncrona para permitir a troca de dados entre computadores e dispositivos pe-
riféricos, configurada a 115.200 bps, velocidade máxima estável. O protocolo emprega
os sinais convencionais TXD (transmissão) e RXD (recepção).

O fluxo de operação é governado por uma máquina de estados finitos com três
estados principais. No estado inicial (IDLE), o sistema aguarda a recepção dos valores
das matrizes de entrada, que são enviados em uma sequência especı́fica a1, b1, c1, d1 para
a primeira matriz, seguidos por a2, b2, c2, d2 para a segunda matriz. Todos os valores
são armazenados na memória de dados, utilizando representação em ponto fixo Q16.8,
onde 16 bits representam a parte inteira e outros 8 bits a parte fracionária. Devido à

limitação decorrente da ausência de instrução de multiplicação no Tiny RISC-V, os 8 bits
mais significativos ficaram inutilizados para uso na multiplicação, sendo usados para o
processamento interno do produto.

(
a1 b1
c1 d1

)
×

(
a2 b2
c2 d2

)
Quando a última entrada é recebida, o sistema automaticamente transiciona para o

estado RUN, onde o processador RISC-V inicia a execução do programa de multiplicação
matricial previamente carregado na memória de instruções enquanto nos estados anterio-
res. Este programa realiza as operações necessárias para calcular o produto das matrizes
e armazena o resultado na memória de dados.

Após a conclusão do processamento, o sistema entra no estado DONE, onde os
resultados são lidos da memória e enviados de volta ao computador hospedeiro através
da mesma interface serial. Nesta fase, ocorre o processo inverso ao de recepção, com
cada valor de 32 bits sendo dividido em quatro transmissões seriais de 8 bits. Todo esse
fluxo é coordenado por sinais de controle que garantem a sincronização entre os diferentes
componentes do sistema.

Figura 5. Diagrama de transição de estados.

Para validar o correto funcionamento da implementação, foram realizados testes
extensivos tanto em simulação quanto na plataforma fı́sica. Na fase de simulação, foi
possı́vel verificar o comportamento da máquina de estados, o armazenamento correto dos
dados na memória e a precisão dos cálculos realizados. Já nos testes práticos, matrizes
com valores conhecidos foram enviadas ao sistema, com os resultados sendo comparados
com cálculos de referência. Por exemplo, ao processar as matrizes (1 2

3 4) e (5 6
7 8), o sistema

retornou corretamente (19 22
43 50). Adicionalmente, como as memórias usadas foram geradas

usando o recursos Mega Wizard Plugin, pertmiu o uso do visualizador de memória do
Quartus II para inspecionar internamente os valores armazenados, oferecendo uma se-
gunda camada de verificação.

6. Resultados

6.1. Avaliação de Desempenho

A análise comparativa foi realizada utilizando o Quartus Prime, com foco em:

• Redução no número de elementos lógicos (GE - Gate Equivalents)
• Impacto no consumo de memória

Tabela 2. Resultados comparados após alterações

Versão do Design Elementos Lógicos Memória (bits)

Processador Personalizado 4383 65536
Tiny RISC-V 4604 32768

Nos testes realizados foi percebido que houve, de fato, uma redução na quanti-
dade de elementos lógicos no processador em cerca de 5%, de 4.604 para 4.383, como
consequência da remoção das instruções U, B e J. O maior impacto ocorreu na Unidade
Lógico-Aritmética e no Concatenador de Imediato, que passaram de 789 e 60 elementos
para 542 e 7, respectivamente.

Contudo, houve um impacto negativo na memória, cujo consumo aumentou de
32.768 para 65.536 bits. Esse aumento se justifica pelo crescimento no número de linhas
de instrução do código de multiplicação de matrizes, que passou de 46 para 2.003 linhas, a
fim de contornar a ausência dos tipos de instrução mencionados anteriormente. Esse pro-
blema pode ser facilmente contornado ao fazer uso de uma das memórias fı́sicas externas
ao chip FPGA, disponı́veis na placa. A Tabela 2 sumariza os resultados experimentais
alcançados.

7. Conclusões e trabalhos futuros

Com o estudo desenvolvido, pode-se concluir que realmente é possı́vel economizar ele-
mentos lógicos ao customizar o processador de propósito geral para um propósito es-
pecı́fico. Foi possı́vel ainda verificar que a eliminação de instruções pode implicar na
perda de otimizações no código assembly necessário para implementar uma solução.
Ainda que isso tenha gerado um impacto na memória, que demandou um incremento
para abarcar o código assembly mais extenso da aplicação, a proposta não fica inviabi-
lizada, considerando que ainda é possı́vel utilizar da memória fı́sica disponı́vel na placa
FPGA ou ainda de esquemas de hierarquia de memória.

Vale destacar que o processador customizado implementado neste trabalho foi
concebido para atuar como um co-processador dedicado à multiplicação de matrizes, vi-
sando descarregar essa operação computacionalmente intensiva de uma CPU principal.
A escolha pela implementação em FPGA permite otimizações especı́ficas para operações
matriciais, como paralelismo de cálculos e acesso eficiente à memória, caracterı́sticas que
seriam menos eficientes em processadores de propósito geral.

Planejamos analisar os trade-offs entre completude funcional e otimização de
hardware, especialmente relevante para aplicações especı́ficas para computação quântica,
que demandam operações matriciais intensivas. Também cabe destacar que para esta
aplicação, o espaço de operações é o espaço de Hilbert, que trabalha com coeficientes
complexos. Adicionalmente, é usual que os valores desses coeficientes estejam limitados
ao intervalo [-1, 1]. Por conta disso, pretende-se como trabalhos futuros implementar
duas melhorias fundamentais no núcleo do processador: o suporte nativo para números
complexos, permitindo que o co-processador execute multiplicações matriciais com ele-
mentos complexos de forma direta e eficiente; e adicionar uma unidade de ponto fixo
otimizada para operações no intervalo [-1, 1]. Ao limitar a faixa de valores conhecida, é

possı́vel dedicar mais bits para a parte fracionária, aumentando a precisão sem sacrificar
desempenho.

Referências
Cui, E., Li, T., and Wei, Q. (2023). Risc-v instruction set architecture extensions: A

survey. IEEE Access, 11:24696–24711.

Gebauer, R., Karcher, N., and Sander, O. (2021). A modular rfsoc-based approach to
interface superconducting quantum bits. In 2021 International Conference on Field-
Programmable Technology (ICFPT), pages 1–9.

Harris, D. M. and Harris, S. L. (2021). Digital Design and Computer Architecture: RISC-
V Edition. Morgan Kaufmann.

Hushon (2020). Tiny-riscv-cpu: A simple risc-v cpu written in verilog. https://
github.com/hushon/Tiny-RISCV-CPU. Acesso em: jun. 2025.

John, L. (2017). Computer Organization and Design Risc-v Edition-the Hardware Soft-
ware Int. Elsevier Science & Technology.

Nielsen, M. A. and Chuang, I. L. (2010). Quantum Computation and Quantum Informa-
tion. Cambridge University Press, 10th anniversary edition edition.

NLP, R. (2023). Bases matemáticas da computação quântica: Álgebra linear,
superposição e entrelaçamento. https://medium.com/@recogna.
nlp/bases-matem%C3%A1ticas-da-computa%C3%A7%C3%A3o-qu%
C3%A2ntica-%C3%A1lgebra-linear-superposi%C3%A7%C3%
A3o-e-entrela%C3%A7amento-7d8b10dda10f. Acessado em: 16 jun.
2025.

Nunes, J. (2016). Computadores quânticos, informação e computação quânticas. Correio
dos Açores, pages 17–17.

Patterson, D. A. and Hennessy, J. L. (2017). Computer Organization and Design RISC-V
Edition: The Hardware Software Interface. Morgan Kaufmann. Acesso em: 21 jun.
2025.

SpinQuanta (2024). World’s cheapest quantum computer: Affordable for quantum edu-
cation. Accessed: 2025-06-20.

SpinQuanta (2025). Superconducting quantum computer price range: Full overview. Ac-
cessed: 2025-06-20.

Wang, S., Wang, X., Xu, Z., Chen, B., Feng, C., Wang, Q., and Ye, T. T. (2024). Opti-
mizing cnn computation using risc-v custom instruction sets for edge platforms. IEEE
Transactions on Computers, 73(5):1371–1384.

Zhao, Y., Kuang, H., Sun, Y., Yang, Z., Chen, C., Meng, J., and Han, J. (2023). Enhan-
cing risc-v vector extension for efficient application of post-quantum cryptography. In
2023 IEEE 34th International Conference on Application-specific Systems, Architec-
tures and Processors (ASAP), pages 10–17.

Zhao, Y., Xie, R., Xin, G., and Han, J. (2022). A high-performance domain-specific pro-
cessor with matrix extension of risc-v for module-lwe applications. IEEE Transactions
on Circuits and Systems I: Regular Papers, 69(7):2871–2884.

