Validando em FPGA um Core RISC-V dedicado
a Simulacao de Circuitos Quanticos

Thiago Andrade !, Breno Nascimento 2, Calebe Conceicao °, Rodolfo Garcia *

'Departamento de Computagio — Universidade Federal de Sergipe (UFS)
Av. Marechal Rondon, s/n — Jardim Rosa Elze — CEP 49100-000
Sao Cristovao — Sergipe — Brasil

thiago.andrade@dcomp.ufs.br,breno.nascimento@dcomp.ufs.br

calebe@dcomp.ufs.br, rodolfo.bottolRdcomp.ufs.br

Abstract. The cost of developing a quantum computer is currently high. In this
context, this article aims to describe the processes and results of research focu-
sed on developing a RISC-V core dedicated to quantum circuit simulation. The
adopted methodology involved simplifying the Tiny RISC-V processor and con-
ducting tests and validations on a Field-Programmable Gate Array (FPGA). The
results are promising, indicating the feasibility of instantiating multiple cores to
explore parallelism to perform quantum circuits simulation, as an alternative to
GPU simulation.

Resumo. O custo para o desenvolvimento de um computador qudntico é alto
nos dias atuais. Nesse contexto, este artigo tem como objetivo descrever os pro-
cessos e resultados de uma pesquisa voltada ao desenvolvimento de um niicleo
RISC-V dedicado a simulacdo de circuitos qudnticos. A metodologia adotada
envolveu a simplificacdo do processador Tiny RISC-V e a realizacdo de testes
de desempenho em um Arranjo de Portas Programdveis em Campo (FPGA).
Os resultados obtidos sdo promissores, indicando a viabilidade de instanciar
miiltiplos cores para explorar o paralelismo para realizar a simulacdo de cir-
cuitos qudnticos, como uma alternativa a simulacdo em GPU.

1. Intruducao

Em 2007, a empresa D-Wave Systems apresentou o primeiro protétipo funcional de
computador quantico. Posteriormente, langou em 2011 o D-Wave One, considerado o
primeiro computador quantico comercial disponivel no mercado [Nunes 2016]. Esse
lancamento agucou o interesse de grandes empresas de computacdo, como Google e
IBM, que hoje perseguem o dominio da tecnologia que promete avancgos na realizacao de
calculos complexos com significativa maior eficiéncia em comparacio aos computadores
tradicionais. No entanto, a ado¢@o dessa tecnologia ainda enfrenta desafios importantes,
especialmente os relacionados ao custo de acesso. Segundo o site Spinquanta, O compu-
tador quantico mais barato do mundo é 2-qubit Portable NMR Quantum Computer que
custa de 8700 a 9000 dolares [SpinQuanta 2024] e computadores quanticos supercondu-
tores podem chegar a 50 milhdes de ddlares [SpinQuanta 2025], além de demandarem
grande espaco fisico e apresentarem dificuldades de alocagdo, o que limita seu acesso a
institui¢des de ensino e pesquisa.

Diante desse cendrio, surge a necessidade de solugdes mais acessiveis para explo-
rar a computacdo quantica. A simulacdo € um caminho ainda necessdrio, mas enfrenta
desafios de eficiéncia,, tendo em vista a demanda exponencial de recursos computacio-
nais que implicam em maior tempo de execucao. Solugdes paralelas apresentam-se como
promissoras neste sentido, como aquelas baseadas em GPUs. O objetivo deste trabalho
¢ o desenvolvimento de um core RISC-V — uma unidade de processamento baseada
na arquitetura de conjunto de instru¢des RISC-V — dedicada a simulagdo de circuitos
quanticos, com foco na investiga¢do sobre impactos na economia de recursos 16gicos e na
reducao do custo de implementacao.

Este artigo estd organizado da seguinte forma:a Secdo 2 relaciona o trabalho a ou-
tros existentes; a Sec¢do 3 apresenta a fundamentacao tedrica sobre computacido quantica
e a arquitetura RISC-V; a Secdo 4 descreve os métodos e ferramentas utilizados no desen-
volvimento do projeto; a Sec¢do 5 discute os Experimentos realizados; a Secdo 6 discute os
resultados obtidos; e, por fim, a Secdo 7 apresenta as conclusdes e propostas de trabalhos
futuros.

2. Trabalhos Relacionados

O RISC-V € uma instruction set architecture (ISA) open-source e livre de royalties,
caracterizada por sua modularidade e extensibilidade, o que viabiliza adaptagdes para
aplicacodes especificas. A literatura sobre o tema € extensa, como exemplificado por
[Cui et al. 2023], que apresenta um mapeamento das principais pesquisas relacionadas ao
uso de extensdes na arquitetura. O estudo evidencia sua ampla ado¢cdo em microprocessa-
dores embarcados, processadores de dominio especifico e sistemas de alto desempenho,
abordando extensoes privilegiadas e ndo privilegiadas.

Entre os trabalhos aplicados, [Zhao et al. 2023] utiliza a extens@o vetorial em al-
goritmos de criptografia pos-quantica, enquanto [Zhao et al. 2022] propde uma extensao
customizada para operagdes matriciais voltadas a aplicagdes criptograficas. De forma
complementar, [Wang et al. 2024] demonstra os ganhos de desempenho proporcionados
por extensdes customizadas. Em contraste, neste trabalho optamos por ndo empregar ex-
tensoes adicionais, com o objetivo de reduzir o nimero de operadores 16gicos e otimizar
0 uso dos recursos de hardware.

Um trabalho relacionado € apresentado por [Gebauer et al. 2021], que descreve
um firmware modular em FPGA para controle de qubits supercondutores. Cada célula
digital integra um nucleo RISC-V com um sequenciador, dois geradores de sinal e um
registrador, comunicando-se por um barramento Wishbone modificado. A ISA utilizada
inclui o conjunto base, extensdes de multiplicacdo e uma extensdo customizada para se-
quenciamento. Em nosso projeto, por outro lado, eliminamos inclusive as instrucdes
basicas da ISA RISC-V, buscando minimizar a complexidade 16gica do processador.

3. Fundamentacao Teérica

Este trabalho concentra esforcos em desenvolver um core RISC-V dedicado a simulacao
de circuitos quanticos. Sendo assim, € necessdrio apresentar a fundamentagcdo sobre
simulacao de sistemas quanticos que se apresentam como requisitos para o core proposto,
bem como as caracteristicas da arquitetura RISC-V e o modelo de referéncia a partir do
qual a customizag¢do proposta foi elaborada.

3.1. Simulacao de circuitos quanticos

Diferentemente da computacdo cléssica, na qual cada bit pode assumir apenas os estados
discretos 0 ou 1, na computacdo quantica um bit quantico (ou qubit) € descrito como
uma combinagdo linear desses dois estados base de um espacgo vetorial complexo. Desse
modo, um qubit possui coeficientes complexos associados a cada um dos estados base |0)
e |1).

BIT QUBIT
& 1 |
((!)
0
0 1 [p) =al0)+p|1)

Figura 1. Comparacao entre bits classicos e qubits. Fonte: [NLP 2023]

A notagdo bra-ket, introduzida por Paul Dirac, permite representar de forma clara
as amplitudes e funcdes de onda dos estados quanticos. Essa notagc@o é vantajosa por pos-
sibilitar a descri¢ao de estados quanticos como vetores coluna em um espaco de Hilbert,
simplificando o arcabouco matemadtico que descreve o sistema computacional quantico.
[Nielsen and Chuang 2010]. Uma operag¢ao em um sistema quantico isolado pode ser des-
crita como uma multiplicag@io de matriz unitaria U pelo vetor de estado |¢)) que representa
o sistema, representada na notagio de Dirac como U |1)).

Um algoritmo quantico nada mais € do que a aplicacdo dessas transformacoes
unitdrias sobre o vetor de estado de forma sequencial e controlada para obter um resul-
tado previsivel. Uma forma de representar um algoritmo quantico é por meio de um
circuito quantico, como o exemplificado na Figura 2. As linhas correspondem aos qubits,
as operagdes sdo representadas pelas caixas, cuja disposi¢do da esquerda para a direita
representa a ordem em que sdo realizadas. Algumas operacdes sdo aplicadas sobre mais
de um qubit.

i —
. -
q2 &_)

Figura 2. Exemplo de Circuito Quantico com Operagoes Basicas de
Superposicao e Controle.

A cada passo do algoritmo quéntico € necessdrio expandir a operacao matricial
que € realizada sobre todos os qubits como uma combinagdo por produto Kronecker da
matriz da porta quantica aplicada naquele instante com a operagao identidade que € apli-
cada sobre os qubits que nao sofrem a operacdo. Em um sistema com N qubits, a matriz
de operacdo resultante é uma matriz quadrada complexa de dimensdo 2. Uma forma
de realizar a simulagdo de um dado algoritmo é computando a sequéncia encadeada das

multiplicacdes matriciais correspondentes a cada passo. Nesse contexto, o desafio com-
putacional reside no incremento exponencial que a adi¢do de um unico qubit no sistema
impacta na dimensao dessas matrizes.

3.2. O processador Tiny RISC-V

Para compreender o contexto do trabalho proposto, ¢ fundamental compreender a arqui-
tetura RISC-V, em especial a versao do processador Tiny RISC-V. Trata-se de um pro-
cessador de pequeno porte e baixa complexidade, projetado para fins educacionais e de
pesquisa, servindo como uma plataforma acessivel ao estudo de arquiteturas de proces-
sadores. O Tiny RISC-V adota a arquitetura RISC-V e oferece suporte ao conjunto de
instrucdes RV32I, correspondente ao nucleo de instrugdes inteiras de 32 bits. Ele utiliza
um barramento de memoria do tipo Harvard, no qual as memorias de instrucio e de da-
dos sdo separadas, permitindo acessos simultaneos e independentes e ndo ha suporte a
operacoes de ponto flutuante.

Sua arquitetura pode ser implementada em diferentes configuracdes — ciclo
unico, multiciclo ou com suporte a pipeline — de acordo com a complexidade desejada
no projeto. Em termos de componentes, o processador é composto por uma unidade de
controle, um banco de registradores, uma unidade 16gico-aritmética (ULA), um contador
de programa (PC), memoria de instrucoes e memoria de dados. A interacdo entre esses
elementos se d4 por meio de um datapath, conforme ilustrado na Figura 3.

IMUX|

IMUX|
PC+4 4
DD
4— Inst[6:0L \l 1MUX
DD

Inst[19:15] Read regl IMUX

pC (Lt Read | [Insti220] o) Read reg2 Read| | 0 5] Data Read
Instruction Registers datal Address data

B31:01 Write reg Read

117 data? 0 ’
Instruction is ata —{ IMUX L Write Data

memory Write data 1 Data memory
MUX T
] Q

Inst[31:0] Immediate
Concatenator

Inst[31:25], Inst[14:12]

>

Figura 3. Diagrama estrutural do processador Tiny RISC-V. Fonte:
[Hushon 2020].

O processador opera com instrucdes de 32 bits, divididas em campos es-
pecificos: Opcode (identifica a operacdo), campos de registradores (especificam os
registradores-fonte e destino), campos de funcdo (refinam a opera¢do) e campos ime-
diatos (valores constantes utilizados em operacdes aritméticas ou de enderecamento)
[Patterson and Hennessy 2017]. Esses campos sdo decodificados pela unidade de con-
trole, que gera sinais para selecao da operacdo na ULA (que realiza operagdes aritméticas
como soma, subtracdo, e légica como AND, OR, XOR, NOT), ativagdo da escrita no
banco de registradores e controle de acesso a memoria (load/store).

Conforme descrito em [John 2017], as instrugdes sdo organizadas em categorias
de acordo com os sinais de controle exigidos e os componentes 16gicos envolvidos. A

arquitetura RISC-V define seis categorias principais de instru¢des em sua implementacao
basica (RV32I), agrupadas em dois blocos funcionais:

Instrucoes de Nicleo

* Tipo R (Register-Register): operagdes aritméticas e logicas entre registradores,
como adi¢do e operacdes booleanas.

* Tipo I (Immediate): operacdes com registrador e valor imediato, incluindo aces-
sos a memoria (loads) e saltos relativos.

* Tipo S (Store): operagdes de armazenamento em memdria, calculando o endereco
a partir da soma entre um registrador base e um deslocamento imediato.

* Tipo U (Upper Immediate): manipulacdo de constantes e enderecos, inserindo
valores de 20 bits nos bits mais significativos do registrador.

Instrucoes de Controle de Fluxo

* Tipo B (Branch): desvios condicionais baseados em comparagdes entre registra-
dores, com deslocamento relativo.

* Tipo J (Jump): saltos incondicionais de longo alcance, uteis para chamadas de
funcao e retornos.

As informagdes contidas na instru¢ao de 32 bits sdo interpretadas de forma com-
binacional, de acordo com o opcode, conforme ilustrado na Tabela 1.

Tabela 1. Formatos das instrucoes base do RISC-V conforme apresentado em
[Harris and Harris 2021].

Formato | 31-25 24-20 | 19-15 | 14-12 | 11-7 6-0

R-type func7 rs2 sl func3 | rd opcode
I-type imm[11:0] rsl func3 | rd opcode
S-type imm[11:5] rs2 rsl func3 | imm[4:0] opcode
B-type imm[12—10:5] | rs2 sl func3 | imm[4:1—11] | opcode
U-type imm([31:12] rd opcode
J-type imm[20—10:1—11—19:12] rd opcode

4. Metodologia

Nesta pesquisa, investiga-se a viabilidade de implementar uma customizacao do Tiny
RISC-V que mantém apenas as estruturas que dao suporte as operagcoes de multiplicacio
de matrizes necessdrias a simulacdo de algoritmos quanticos descritos no modelo de cir-
cuitos.

A primeira etapa da pesquisa consiste em selecionar quais operacdes sao ne-
cessarias a multiplicacdo de matrizes. Para isso, foi implementado em C um c6digo para
multiplicacdo de matriz, esse que pode ser observado abaixo, e analisado seu cédigo as-
sembly do RISC-V gerado por meio da compilagdo usando o compilador GCC (GNU
Compiler Collection) com o comando gcc -S mulmatrizes.c. O cédigo gerado
foi entdo refinado com o auxilio do simulador RARS — RISC-V Assembler and Runtime
Simulator — , com o objetivo de reduzir a0 mdximo o conjunto de instru¢des necessarias,
mantendo a funcionalidade. Neste estudo, verificou-se que era necessario manter apenas
o suporte a instrugdes dos tipos R, I e S na arquitetura.

A segunda etapa consistiu na customizacdo da arquitetura do Tiny RISC-V. Para
realizar simulacdo funcional, foi usado o suporte do simulador Icarus Verilog e do vi-
sualizador de forma de onda GTKwave, visando a eliminacdo dos componentes 16gicos
dedicados ao processamento das instrugdes dos tipos U, B e J. O objetivo € avaliar o im-
pacto no desempenho e na complexidade do circuito, e quantificar os ganhos em termos de
elementos 16gicos necessarios a implementacdo da arquitetura. Com isso, almeja-se rea-
lizar uma avaliagdo inicial do custo-beneficio para o desenvolvimento de um processador
dedicado, em aprofundamentos futuros.

vector<vector<float>> multiplicarMatrizes (const vector<vector<
float>>& A, const vector<vector<float>>& B) {
int linhasA = A.size (), colunasA = A[0].size (), colunasB = B
[0] .size () ;
vector<vector<float>> resultado (linhasA, vector<float> (
colunasB, 0.0f));

for (int i = 0; i < linhasA; i++)
for (int j = 0; Jj < colunasB; Jj++)
for (int k = 0; k < colunasA; k++)
resultado[i] [Jj] += A[i][k] = B[k]I[]J1;

return resultado;

5. Experimentos realizados

O Tiny RISC-V customizado no contexto deste trabalho apresenta as seguintes carac-
teristicas fundamentais:

* Banco de 32 registradores de propdsito geral
* Arquitetura Harvard modificada com:
— Memodria de instru¢des (ROM)
— Memoria de dados (RAM)
* Médulo de memoria unificado com portas diferenciadas por fungao
* Suporte completo ao conjunto de instru¢oes RV32I

5.1. Implementacao Inicial

Desenvolvemos um algoritmo em assembly RISC-V utilizando exclusivamente instrugdes
dos tipos:

* R: Operagoes registrador-registrador
* I: Operagdes com imediato
* S: Armazenamento em memoria

Este c6digo implementa multiplicacdo matricial com entrada direta por meio de
um computador hospedeiro, conforme ilustrado na Figura 5.
5.2. Otimizacao da Arquitetura

Foram realizadas simplificacdes no processador base Tiny RISC-V por meio da remog¢ao
dos circuitos dependentes das instru¢des dos tipos U, B e J. Essas modificacdes foram

S
oy
.

" Read Address |—
1
> L Data
c Memory o e
. I Serial Controler
witeData || ﬁ

xaw [\ xow

Instruction i g
Memory T

— W

L

T ’ *Immediate Concatenator

Figura 4. Fornecimento de dados do computador hospedeiro para o processa-
dor.

implementadas por meio de alteragdes no cédigo-fonte no Visual Studio Code, especial-
mente nas l6gicas de multiplexacdo presentes na Unidade Logica Aritmética (ULA), na
Unidade de Controle Principal, no Contador de Programas (PC) e no Caminho de Da-
dos (Datapath), que originalmente dependiam dessas instrucdes. Por exemplo, no Tiny
RISC-V original.

Por exemplo:

assign NXTPC = ("RSTn)? 0 : (Jump)? ((JALorJALR)? JALRAddress
JALAddress) : ((BranchTaken)? BranchTarget : PC+4);

Essa era a linha responsavel por controlar qual seria o proximo valor atribuido ao
Contador de Programas. Como pode ser observado, havia diversos sinais dependentes das
operagdes do tipo B e J. Na nossa versao final, removemos a dependéncia do processador
em relacdo a esses sinais que eram atribuidos na Unidade de controle.

assign NXTPC = ("RSTn)? 0 : (PC+4);

5.3. Validacao em FPGA

Para a validacao em FPGA, foi implementado um sistema completo baseado em um pro-
cessador RISC-V personalizado com interface serial RS-232, conforme detalhado na Fi-
gura 5. Esta arquitetura integra trés componentes principais: o nucleo de processamento
RISC-V, o controlador serial dedicado e a interface de comunicagdo com o computador
hospedeiro.

Essa implementacao utiliza comunicacdo RS-232, um padrdo de comunicacio
serial assincrona para permitir a troca de dados entre computadores e dispositivos pe-
riféricos, configurada a 115.200 bps, velocidade méaxima estavel. O protocolo emprega
os sinais convencionais TXD (transmissdao) e RXD (recep¢ao).

O fluxo de operacao é governado por uma mdquina de estados finitos com trés
estados principais. No estado inicial (IDLE), o sistema aguarda a recep¢cao dos valores
das matrizes de entrada, que sdo enviados em uma sequéncia especifica aq, by, ¢, d; para
a primeira matriz, seguidos por as, bs, co, do para a segunda matriz. Todos os valores
sdo armazenados na memoria de dados, utilizando representagdo em ponto fixo Q16.8,
onde 16 bits representam a parte inteira e outros 8 bits a parte fracionaria. Devido a

limitag¢do decorrente da auséncia de instru¢ao de multiplicacdo no Tiny RISC-V, os 8 bits
mais significativos ficaram inutilizados para uso na multiplicagcdo, sendo usados para o
processamento interno do produto.

ar by az by
X
1 dy Ca do
Quando a dltima entrada € recebida, o sistema automaticamente transiciona para o
estado RUN, onde o processador RISC-V inicia a execugdo do programa de multiplicagao
matricial previamente carregado na memoria de instrugdes enquanto nos estados anterio-

res. Este programa realiza as operacdes necessdrias para calcular o produto das matrizes
e armazena o resultado na memoria de dados.

Ap6s a conclusdo do processamento, o sistema entra no estado DONE, onde os
resultados sdo lidos da memoria e enviados de volta ao computador hospedeiro através
da mesma interface serial. Nesta fase, ocorre o processo inverso ao de recep¢cdo, com
cada valor de 32 bits sendo dividido em quatro transmissdes seriais de 8 bits. Todo esse
fluxo é coordenado por sinais de controle que garantem a sincronizagao entre os diferentes
componentes do sistema.

Figura 5. Diagrama de transicao de estados.

Para validar o correto funcionamento da implementacao, foram realizados testes
extensivos tanto em simulagdo quanto na plataforma fisica. Na fase de simulacio, foi
possivel verificar o comportamento da maquina de estados, o armazenamento correto dos
dados na memoria e a precisdo dos célculos realizados. Ja nos testes praticos, matrizes
com valores conhecidos foram enviadas ao sistema, com os resultados sendo comparados
com cdlculos de referéncia. Por exemplo, ao processar as matrizes (1 %) e (2 $), o sistema
retornou corretamente (13 22). Adicionalmente, como as memorias usadas foram geradas
usando o recursos Mega Wizard Plugin, pertmiu o uso do visualizador de memoria do
Quartus II para inspecionar internamente os valores armazenados, oferecendo uma se-

gunda camada de verificacdo.

6. Resultados

6.1. Avaliacao de Desempenho
A anélise comparativa foi realizada utilizando o Quartus Prime, com foco em:

* Reduc¢do no ndmero de elementos légicos (GE - Gate Equivalents)
* Impacto no consumo de memoria

Tabela 2. Resultados comparados apds alteragcoes

Versao do Design Elementos Logicos Memoria (bits)
Processador Personalizado 4383 65536
Tiny RISC-V 4604 32768

Nos testes realizados foi percebido que houve, de fato, uma redu¢ao na quanti-
dade de elementos 16gicos no processador em cerca de 5%, de 4.604 para 4.383, como
consequéncia da remocao das instru¢des U, B e J. O maior impacto ocorreu na Unidade
Logico-Aritmética e no Concatenador de Imediato, que passaram de 789 e 60 elementos
para 542 e 7, respectivamente.

Contudo, houve um impacto negativo na memdria, cujo consumo aumentou de
32.768 para 65.536 bits. Esse aumento se justifica pelo crescimento no nimero de linhas
de instrucdo do cédigo de multiplicacdo de matrizes, que passou de 46 para 2.003 linhas, a
fim de contornar a auséncia dos tipos de instrucdo mencionados anteriormente. Esse pro-
blema pode ser facilmente contornado ao fazer uso de uma das memorias fisicas externas
ao chip FPGA, disponiveis na placa. A Tabela 2 sumariza os resultados experimentais
alcancados.

7. Conclusoes e trabalhos futuros

Com o estudo desenvolvido, pode-se concluir que realmente € possivel economizar ele-
mentos 16gicos ao customizar o processador de propdsito geral para um propdsito es-
pecifico. Foi possivel ainda verificar que a eliminacdo de instrucdes pode implicar na
perda de otimizagdes no codigo assembly necessario para implementar uma solugio.
Ainda que isso tenha gerado um impacto na memoria, que demandou um incremento
para abarcar o c6digo assembly mais extenso da aplicagdo, a proposta ndo fica inviabi-
lizada, considerando que ainda € possivel utilizar da memoria fisica disponivel na placa
FPGA ou ainda de esquemas de hierarquia de memoria.

Vale destacar que o processador customizado implementado neste trabalho foi
concebido para atuar como um co-processador dedicado a multiplicacao de matrizes, vi-
sando descarregar essa operacdo computacionalmente intensiva de uma CPU principal.
A escolha pela implementagao em FPGA permite otimizacdes especificas para operagdes
matriciais, como paralelismo de calculos e acesso eficiente a memdria, caracteristicas que
seriam menos eficientes em processadores de propdsito geral.

Planejamos analisar os trade-offs entre completude funcional e otimizacao de
hardware, especialmente relevante para aplica¢des especificas para computacao quantica,
que demandam opera¢des matriciais intensivas. Também cabe destacar que para esta
aplicacdo, o espago de operagdes € o espaco de Hilbert, que trabalha com coeficientes
complexos. Adicionalmente, é usual que os valores desses coeficientes estejam limitados
ao intervalo [-1, 1]. Por conta disso, pretende-se como trabalhos futuros implementar
duas melhorias fundamentais no nicleo do processador: o suporte nativo para nimeros
complexos, permitindo que o co-processador execute multiplicagdes matriciais com ele-
mentos complexos de forma direta e eficiente; e adicionar uma unidade de ponto fixo
otimizada para operacdes no intervalo [-1, 1]. Ao limitar a faixa de valores conhecida, é

possivel dedicar mais bits para a parte fraciondria, aumentando a precisao sem sacrificar
desempenho.

Referéncias

Cui, E., Li, T., and Wei, Q. (2023). Risc-v instruction set architecture extensions: A
survey. IEEE Access, 11:24696-24711.

Gebauer, R., Karcher, N., and Sander, O. (2021). A modular rfsoc-based approach to
interface superconducting quantum bits. In 2021 International Conference on Field-
Programmable Technology (ICFPT), pages 1-9.

Harris, D. M. and Harris, S. L. (2021). Digital Design and Computer Architecture: RISC-
V Edition. Morgan Kaufmann.

Hushon (2020). Tiny-riscv-cpu: A simple risc-v cpu written in verilog. https://
github.com/hushon/Tiny-RISCV-CPU. Acesso em: jun. 2025.

John, L. (2017). Computer Organization and Design Risc-v Edition-the Hardware Soft-
ware Int. Elsevier Science & Technology.

Nielsen, M. A. and Chuang, I. L. (2010). Quantum Computation and Quantum Informa-
tion. Cambridge University Press, 10th anniversary edition edition.

NLP, R. (2023). Bases matemdticas da computacio quéntica: Algebra linear,
superposicdo e entrelagamento. https://medium.com/@recogna.
nlp/bases-matem%C3%Alticas—-da-computa%C3%A7%C3%A30-qu%
C3%A2ntica—-%C3%Allgebra-linear-superposi%C3%A7%C3%
A3o-e-entrela%C3%A7amento-7d8b10ddal0f. Acessado em: 16 jun.
2025.

Nunes, J. (2016). Computadores quanticos, informagdo e computa¢do quanticas. Correio
dos Acores, pages 17-17.

Patterson, D. A. and Hennessy, J. L. (2017). Computer Organization and Design RISC-V
Edition: The Hardware Software Interface. Morgan Kaufmann. Acesso em: 21 jun.
2025.

SpinQuanta (2024). World’s cheapest quantum computer: Affordable for quantum edu-
cation. Accessed: 2025-06-20.

SpinQuanta (2025). Superconducting quantum computer price range: Full overview. Ac-
cessed: 2025-06-20.

Wang, S., Wang, X., Xu, Z., Chen, B., Feng, C., Wang, Q., and Ye, T. T. (2024). Opti-
mizing cnn computation using risc-v custom instruction sets for edge platforms. IEEE
Transactions on Computers, 73(5):1371-1384.

Zhao, Y., Kuang, H., Sun, Y., Yang, Z., Chen, C., Meng, J., and Han, J. (2023). Enhan-
cing risc-v vector extension for efficient application of post-quantum cryptography. In
2023 IEEE 34th International Conference on Application-specific Systems, Architec-
tures and Processors (ASAP), pages 10-17.

Zhao, Y., Xie, R., Xin, G., and Han, J. (2022). A high-performance domain-specific pro-
cessor with matrix extension of risc-v for module-lwe applications. IEEE Transactions
on Circuits and Systems I: Regular Papers, 69(7):2871-2884.

