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Abstract. This paper compares machine learning algorithms for predicting the
dollar’s exchange rate against the real, seeking the most accurate model. Us-
ing historical and time series data, supervised classification techniques were
applied. The following algorithms were evaluated: Random Forest, Neural Net-
work, SVR, SVC, Linear Regression, and KNN. Random Forest and Neural Net-
work stood out, with accuracies of 93.68% and 89.47%. SVC, SVR, and KNN
performed poorly. Linear Regression performed intermediately, serving as a
benchmark. The conclusion is that models capable of capturing non-linear re-
lationships are more effective in forecasting exchange rates in volatile scenarios.

Resumo. Este trabalho compara algoritmos de aprendizado de mdquina para
prever a variacdo do dolar frente ao real, buscando o modelo mais preciso.
Utilizando dados historicos e séries temporais, foram aplicadas técnicas su-
pervisionadas de classificacdo. Avaliaram-se os algoritmos: Random Forest,
Rede Neural, SVR, SVC, Regressdo Linear e KNN. Random Forest e Rede Neu-
ral se destacaram, com acurdcias de 93,68% e 89,47%. Jd SVC, SVR e KNN
apresentaram desempenho inferior. A Regressdo Linear teve desempenho inter-
medidrio, servindo como referéncia. Conclui-se que modelos capazes de cap-
turar relacoes ndo lineares sdo mais eficazes na previsdo cambial em cendrios
voldteis.

1. Introducao

O mercado financeiro € caracterizado por comportamentos imprevisiveis, fortemente in-
fluenciados por decisdes humanas [Tsantekidis et al. 2017]. Essa instabilidade impul-
siona o desenvolvimento de modelos computacionais capazes de lidar com a complex-
idade, variabilidade e ruidos presentes nas séries temporais de precos. Nesse cendrio,
destaca-se o uso de algoritmos de aprendizado de maquina (Machine Learning — ML),
que permitem a andlise preditiva e a automacao de decisdes, transformando a forma como
o mercado opera [Machado et al. 2020].

ML pode ser definido como um processo adaptativo em que um sistema ajusta sua
estrutura com base nas interacdes com o ambiente, passando a realizar previsdes ou de-
cisdes com base em dados recebidos [Ryll and Seidens 2019]. No entanto, a diversidade
de métodos existentes levanta duvidas sobre quais abordagens oferecem maior eficicia
em diferentes contextos financeiros. Assim, torna-se relevante implementar e comparar



técnicas para identificar as mais adequadas ao mercado brasileiro, contribuindo para de-
cisdes mais seguras, reducdo de perdas e aumento da lucratividade.

Este trabalho propde uma analise comparativa de algoritmos supervisionados de
classificacdo e regressdo para prever a variacdo do ddlar, avaliando acuricia e desem-
penho financeiro simulado. Ressalta-se que nem todos os modelos sdo universalmente
aplicdveis, pois cada ativo possui dindmicas proprias [Lin et al. 2011]. Além disso, os
parametros dos indicadores técnicos exigem calibragdo especifica, considerando as carac-
teristicas do ativo e do ambiente de negociagao.
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Os algoritmos analisados incluem: Random Forest Classifier, Rede Neural Ar-
tificial, Support Vector Classifier (SVC), Support Vector Regression (SVR), Regressao
Linear e K-Nearest Neighbors Regressor (KNN). Cada um representa um paradigma
distinto de ML. O SVR busca aproximar os dados por meio de uma margem de erro
[Ring and Eskofier 2016]; a Regressdao Linear modela relacdes lineares [Mali 2024]; o
KNN estima valores com base na média dos vizinhos mais proximos [Singh 2024]; a Ran-
dom Forest combina vérias arvores de decisao para melhorar a precisao [Breiman 2001];
a Rede Neural simula redes biolgicas com multiplas camadas [Haykin 2001]; e o SVC
encontra o hiperplano 6timo para separacao de classes [Cortes and Vapnik 1995].

A escolha desses modelos visa explorar abordagens variadas do aprendizado su-
pervisionado, buscando identificar qual oferece o melhor desempenho na previsao da
variagdao do dolar frente ao real, com base em dados reais e métricas estatisticas apro-
priadas.

2. Metodologia

A metodologia adotada neste trabalho visa analisar e comparar o desempenho de difer-
entes algoritmos de Machine Learning na previsdo da variacdo do dolar (ativo US-
DBRL=X) no mercado financeiro brasileiro. Neste contexto, prever a variacdo do




dolar significa antecipar a dire¢do do movimento didrio, se haverd valorizagao (alta) ou
desvalorizacdo (baixa) em relacdo ao fechamento do dia anterior. Este problema € tratado
como uma tarefa de classificagdo bindria, na qual o objetivo dos modelos € prever corre-
tamente o sinal da varia¢do didria do preco.

Essa abordagem visa avaliar a eficicia dos modelos sob a 6tica nao apenas da
acurdcia preditiva, mas também da sua aplicabilidade pratica em operagcdes de mercado.
A proposta é proporcionar uma visao abrangente sobre quais algoritmos apresentam maior
robustez, desempenho e aderéncia as caracteristicas do mercado financeiro nacional.

2.1. Coleta de Dados

Os dados historicos do ativo USDBRL=X foram coletados por meio da API do Ya-
hoo Finance, com frequéncia didria, contemplando informag¢gdes como preco de aber-
tura, fechamento, maxima, minima e volume. O intervalo dos dados utilizados foram de
01/01/2017 a 31/12/2017, garantindo uma base consistente e temporalmente localizada
para o treinamento, validacdo e teste dos modelos.

Além dos dados brutos, foram calculados indicadores técnicos com o objetivo
de enriquecer as varidveis explicativas (features) utilizadas na modelagem. Esses indi-
cadores sao amplamente adotados na literatura de anélise técnica e contribuem para cap-
turar informacdes relevantes sobre tendéncias, forca do movimento e possiveis pontos de
reversao no mercado.

Os indicadores calculados foram:Médias Mdveis Exponenciais (EMAS), Indice de
Forg¢a Relativa (RSI), Williams %R, Moving Average Convergence Divergence (MACD),
Rate of Change (ROC) e Estocastico %K. A inclusao desses indicadores visa fornecer
aos modelos uma representagdo mais rica e informativa do comportamento do ativo,
considerando nio apenas os dados de preco, mas também informacdes derivadas de
tendéncias, for¢a relativa e condi¢des de mercado, elementos fundamentais na constru¢ao
de modelos preditivos robustos.

2.2. Desenvolvimento dos Modelos

Foram desenvolvidos e configurados seis modelos de aprendizado de maquina, seleciona-
dos por representarem diferentes paradigmas dentro do Machine Learning:

* Random Forest Classifier: algoritmo do tipo ensemble que combina vdrias
arvores de decisao para realizar classificacdes robustas e reduzir o overfitting;

* Rede Neural Artificial: modelo de classificagdo composto por multiplas camadas
densas com funcao de ativacdo ReLLU e camada de saida sigmoide, utilizando a
API Keras/TensorFlow;

* Support Vector Classifier (SVC): modelo de classificacdo baseado em SVM,
ideal para separacao binaria;

* Support Vector Regression (SVR): apesar de ser originalmente um modelo de
regressao, foi adaptado para realizar classificacdo com base na interpretacdo do
sinal da previsao;

* Regressao Linear: utilizada para classificagdo bindria, identificando a direc@o do
movimento (alta ou baixa) por meio da transformagdo dos valores previstos em
classes, com base em um limiar definido;



e K-Nearest Neighbors (KNN): utilizado na abordagem de classificacdo,
baseando-se nos k vizinhos mais proximos para determinar se 0 movimento sera
de alta ou baixa.

Todos os modelos foram treinados para prever a dire¢do do movimento do preco (alta ou
baixa).

2.3. Treinamento e Validacao dos Modelos

O conjunto de dados foi dividido de forma sequencial, respeitando a ordem temporal
das observagdes. Os primeiros 70% dos dados do ano de 2017 foram utilizados para o
treinamento dos modelos, enquanto os 30% finais foram reservados para o teste.

A escolha pela divisao dos dados para treinamento e para teste foi definida con-
siderando o tamanho da base (dados diarios do ano de 2017) e a necessidade de balancear
a capacidade de aprendizado do modelo e sua validacdo em dados futuros. Essa propor¢ao
assegura que o modelo tenha dados suficientes para capturar padrdes historicos e, simul-
taneamente, uma amostra representativa para avaliar sua capacidade de generaliza¢do no
periodo mais recente. Esse tipo de divisdo é frequentemente adotado em estudos que
tratam de séries temporais financeiras com janelas anuais ou de curto prazo.

Essa abordagem assegura que a avaliagdo dos modelos ocorra em dados futuros
nao vistos, refletindo um cendrio mais proximo da aplicagdo real no mercado financeiro.
Foram aplicadas técnicas como:

 Validacao cruzada k-fold, aumentando a robustez na avaliacao dos modelos;

* Grid Search para ajuste de hiperpardmetros em alguns modelos, especialmente
SVC, SVR e KNN.

2.4. Avaliacao de Desempenho

Os modelos foram avaliados com base nas seguintes métricas de classificagdo:
* Acurécia;
e Precisao;

Recall;

F1-Score;
e Matriz de confusao

2.5. Analise Comparativa

Por fim, os modelos foram comparados entre si, considerando nio apenas as métricas de
desempenho, mas também aspectos como:

Robustez a dados ruidosos;

Sensibilidade a overfitting;

» Capacidade de generalizagdo;

Resultados financeiros nas simulacdes de mercado.

Essa andlise permitiu identificar as vantagens e desvantagens de cada abordagem dentro
do contexto do mercado financeiro brasileiro.



3. Resultados

Antes da analise dos resultados, € importante destacar o significado das métricas apresen-
tadas nas Tabelas de classificacdo. As métricas Precision, Recall e F1-score sao calcu-
ladas individualmente para cada classe, sendo que:

* Classe 1 corresponde aos dias em que houve valorizacao do ddélar frente ao real
(movimento de alta).

* Classe 0 representa os dias em que houve desvalorizacao do délar (movimento
de baixa).

Cada tabela exibe, além das métricas por classe, dois tipos de médias:

e Média Macro: é a média aritmética das métricas (Precision, Recall e F1-score)
considerando as duas classes igualmente, sem levar em conta a quantidade de
exemplos de cada uma. Essa média € til para avaliar se 0 modelo possui desem-
penho balanceado entre as classes, especialmente em cendrios de desbalancea-
mento.

» Média Ponderada (Weighted Average): corresponde a média das métricas pon-
derada pelo support (nimero de amostras) de cada classe. Dessa forma, classes
mais representadas t€ém maior influéncia no resultado final, refletindo o desem-
penho global do modelo de maneira proporcional a distribui¢ao dos dados.

O campo Support indica o nimero de amostras reais pertencentes a cada classe no
conjunto de teste. Esse valor € essencial para contextualizar as métricas, principalmente
em casos de distribui¢do desbalanceada entre os dias de alta e de baixa do ddlar.

A interpretacdo conjunta dessas métricas permite uma avaliacdo abrangente da
capacidade dos modelos, ndo apenas em termos de acuricia global, mas também quanto
a sua robustez, capacidade de generalizacdo e sensibilidade a ruidos fatores cruciais na
previsao da variagdo do dodlar.

Como mostrado na Tabela 2, o modelo Random Forest apresentou os melhores
resultados entre as abordagens utilizadas. O modelo apresentou uma acurdcia de 93,68%,
com F1-score de 0.95 para a média ponderada. Destacando-se especialmente pelo exce-
lente desempenho na previsdao da classe 1, representando os dias de alta do ddlar, com
recall e precision préximos de 1. Isso indica que o modelo ndo apenas identifica correta-
mente os dias de alta, como também se mostra confiavel ao fazé-lo. Tal resultado reflete
a natureza robusta do Random Forest, capaz de lidar com ruidos e complexidades nos
dados financeiros, caracteristica essencial em ambientes de mercado.

A Matriz de Confusio apresentada na Tabela 3 reforca esses resultados. E possivel
observar que, dos 62 dias de alta (classe 1), 56 foram classificados corretamente, e houve
apenas 6 falsos negativos. Para os 33 dias de baixa (classe 0), todos foram corretamente
classificados, sem ocorréncia de falsos positivos.



Table 2. Relatorio de Classificacao Random Forest

Classe Precision Recall F1-score Support
0 0.85 1.00 0.92 33
1 1.00 0.90 0.95 62
Acuracia 0.9368 95
Média Ponderada 0.92 0.95 0.93 95
Média Macro 0.95 0.94 0.94 95

Table 3. Matriz de Confusao - Random Forest
Prev. Baixa (0) Prev. Alta (1)

Real Baixa (0) 33 0
Real Alta (1) 6 56

Em segundo lugar, a Rede Neural Tabela 4 apresentou também resultados ex-
pressivos, com acurdcia de 89% e Fl-score médio de 0.89. Apesar de levemente inferior
ao Random Forest, o modelo manteve desempenho equilibrado entre as classes e boa ca-
pacidade de generalizacdo. Isso sugere que, mesmo sendo mais sensivel a sobreajustes
(overfitting), a rede foi bem configurada e treinada, obtendo resultados consistentes.

Analisando a Matriz de Confusdo da Tabela 5, verifica-se que, assim como no
Random Forest, todos os 33 dias de baixa foram corretamente identificados. Para os dias
de alta (classe 1), o modelo acertou 52, porém cometeu 10 erros, classificando incorreta-
mente esses dias como baixa. O que representa uma quantidade maior de falsos negativos
em relacdo ao Random Forest.

Table 4. Relatorio de Classificacdao Rede Neural

Classe Precision Recall F1-score Support
0 0.77 1.00 0.87 33
1 1.00 0.84 0.91 62
Acuracia 0.8947 95
Média Ponderada 0.88 0.92 0.89 95
Média Macro 0.92 0.89 0.90 95

Table 5. Matriz de Confusao - Rede Neural
Prev. Baixa (0) Prev. Alta (1)

Real Baixa (0) 33 0
Real Alta (1) 10 52

Por outro lado, modelos mais simples ou menos adaptados ao problema especifico
apresentaram desempenho significativamente inferior. O Support Vector Classifier (SVC),
mostrado na Tabela 6, teve acurdcia de apenas 43%, com Fl-score de 0.51. A baixa
capacidade de identificar corretamente os dias de alta (classe 1), cujo recall ficou em



36%, indica fragilidade do modelo diante de dados financeiros ruidosos e possivelmente
mal balanceados.

Essa limitagdo € ainda mais evidente na Matriz de Confusdo apresentada na
Tabela 7. O modelo acertou apenas 16 dias de alta e cometeu 16 erros para essa mesma
classe, enquanto na classe de baixa, houve 23 acertos e 21 falsos positivos, o que compro-
mete seriamente sua confiabilidade.

Table 6. Relatorio de Classificagcdao Support Vector Classifier

Classe Precision Recall F1-score Support
0 0.59 0.52 0.55 44
1 0.43 0.50 0.46 32
Acuracia 0.5131 76
Média Macro 0.51 0.51 0.51 76
Média Ponderada 0.52 0.51 0.52 76

Table 7. Matriz de Confusao - Support Vector Classifier (SVC)
Prev. Baixa (0) Prev. Alta (1)

Real Baixa (0) 23 21
Real Alta (1) 16 16

A Regressdo Linear Tabela 8 teve desempenho mediano, com acuricia de 54%
e Fl-score médio de 0.54. Embora inferior as abordagens mais complexas, apresenta
uma alternativa mais simples e interpretavel. Pode ser ttil como ponto de partida (base-
line) para andlises, mas apresenta limitagdes claras quanto a modelagem de relacdes nao
lineares, que s@o comuns em séries temporais financeiras.

A Matriz de Confusado da Tabela 9 evidencia esse desempenho intermedidrio: dos
44 dias de baixa, 30 foram corretamente classificados e 14 foram classificados incorreta-
mente como alta. Para os 32 dias de alta, o modelo acertou 13, mas cometeu 19 erros, o
que representa uma elevada taxa de falsos negativos.

Table 8. Relatorio de Classificagao Regressao Linear

Classe Precision Recall F1-score Support
0 0.61 0.68 0.65 44
1 0.48 0.41 0.44 32
Acuracia 0.5657 76
Média Macro 0.55 0.54 0.54 76
Média Ponderada 0.56 0.57 0.56 76

Table 9. Matriz de Confusao - Regressao Linear
Prev. Baixa (0) Prev. Alta (1)
Real Baixa (0) 30 14
Real Alta (1) 19 13




O desempenho do K-Nearest Neighbors Regressor (KNN), mostrado na Tabela
10, foi particularmente preocupante. Apesar de uma acuréacia de 58%, o modelo falhou
completamente em prever a classe 1, com recall de 0.00. Isso revela que a acurécia € uma
métrica enganosa neste caso, ja que o modelo ndo consegue capturar os momentos de alta
do ddlar uma informacdo critica no contexto de negociacdo cambial.

A Matriz de Confusdo (Tabela 11) mostra claramente esse problema: todos os
32 dias de alta foram classificados como baixa (classe 0), enquanto os 44 dias de baixa
foram corretamente classificados. Isso caracteriza um modelo enviesado, que aprendeu
a priorizar a classe majoritaria no treinamento, ignorando completamente a classe mi-
noritdria.

Table 10. Relatorio de Classificacao K-Nearest Neighbors Regressor

Classe Precision Recall F1-score Support
0 0.58 1.00 0.73 44
1 0.00 0.00 0.00 32
Acuracia 0.5789 76
Média Macro 0.29 0.50 0.37 76
Média Ponderada 0.34 0.58 0.42 76

Table 11. Matriz de Confusao - K-Nearest Neighbors (KNN)
Prev. Baixa (0) Prev. Alta (1)
Real Baixa (0) 44 0
Real Alta (1) 32 0

De forma semelhante, o modelo de Support Vector Regression (SVR), apresentado
na Tabela 12, também apresentou desempenho insatisfatério. Embora tenha alcancado
uma acurdcia de 56%, o recall para a classe 1 novamente foi nulo. O F1-score médio ficou
em 0.37, confirmando que o modelo nao conseguiu capturar adequadamente as variacoes
positivas do dolar. Isso reforca a limitacdo do SVR quando adaptado para classificacao
bindria por meio de um limiar fixo, sendo mais apropriado para regressao continua do que
para predicdo categdrica nesse cendrio.

A andlise da Matriz de Confusao (Tabela 13) confirma esse comportamento: assim
como no KNN, todos os 32 dias reais de alta foram erroneamente classificados como
baixa, enquanto os 44 dias de baixa foram corretamente previstos. Isso evidencia que o
SVR, quando aplicado de forma ingénua para classificacdo, ndo € uma abordagem vidvel
neste contexto.

Table 12. Relatorio de Classificacao Support Vector Regression

Classe Precision Recall F1-score Support
0 0.58 1.00 0.73 44
1 0.00 0.00 0.00 32
Acuracia 0.5789 76
Média Macro 0.29 0.50 0.37 76

Média Ponderada 0.34 0.58 0.42 76




Table 13. Matriz de Confusao - Support Vector Regression (SVR)
Prev. Baixa (0) Prev. Alta (1)
Real Baixa (0) 44 0
Real Alta (1) 32 0

A Tabela 14 apresenta uma visao consolidada do desempenho dos modelos, con-
siderando acuricia, precisdo, recall e Fl-score por classe. Os algoritmos Random For-
est e Rede Neural obtiveram os melhores resultados gerais, com acuricias de 93,68%
e 89,47%, respectivamente, além de elevados valores de Fl-score ponderado (0.93 e
0.89). Ambos apresentaram 6timo desempenho na identificagdo da classe 1 (valorizagao
do délar), com destaque para o recall, o que demonstra boa sensibilidade na detecc¢do de
dias de alta.

Modelos como KNN e SVR, embora tenham apresentado acuricia proxima de
58%, obtiveram recall e F1-score nulos para a classe 1, indicando total falha na previsao
de valorizacao da moeda, mesmo acertando razoavelmente a classe 0. Esses resultados
revelam forte viés de classificac@o para a classe majoritéria, tipico de modelos sensiveis a
desbalanceamentos. A Regressdao Linear teve desempenho mediano, com F1-score pon-
derado de 0.56, apresentando certo equilibrio entre as classes, mas com limitacdes claras
em capturar relacdes ndo lineares. O Support Vector Classifier (SVC), por sua vez, foi o
modelo com pior desempenho geral, com métricas fracas em ambas as classes.

De forma geral, os resultados indicam que modelos mais robustos na detec¢do de
padroes complexos e nao lineares — como Random Forest e Redes Neurais — sdao mais
adequados para tarefas de previsdao em mercados financeiros, especialmente em cendrios
de alta volatilidade e distribui¢do desbalanceada entre classes.

Table 14. Comparativo Consolidado de Desempenho dos Modelos por Classe

Algoritmo Acuracia Prec. (0) Rec. (0) F1(0) Prec. (1) Rec. (1) F1 (Pond.)
Random Forest  93,68% 0.85 1.00 0.92 1.00 0.90 0.93
Rede Neural 89,47 % 0.77 1.00 0.87 1.00 0.84 0.89
KNN Regressor  57,89% 0.58 1.00 0.73 0.00 0.00 0.42
SVR 57,89% 0.58 1.00 0.73 0.00 0.00 0.42
Reg. Linear 56,57% 0.61 0.68 0.65 0.48 0.41 0.56
SVC 51,31% 0.59 0.52 0.55 0.43 0.50 0.52

4. Conclusao

Este trabalho teve como objetivo avaliar o desempenho de diferentes algoritmos de apren-
dizado de mdaquina na previsdo da variacdo do délar frente ao real, utilizando dados
histéricos e indicadores técnicos. A partir de uma abordagem comparativa, foram anal-
1sados modelos de classificacdo e regressdao, com €nfase na acuricia preditiva e na capaci-
dade de generalizacao.

Os resultados evidenciam que modelos capazes de capturar relagdes nao lineares,
como Random Forest e Redes Neurais, apresentam desempenho significativamente supe-
rior, com acurécia de 93,68% e 89,47%, respectivamente. Ambos demonstraram robustez



frente a variabilidade dos dados e elevada capacidade na identificacdo de movimentos de
valorizagao do dolar.

Por outro lado, algoritmos como Support Vector Classifier, K-Nearest Neighbors e
Support Vector Regression mostraram desempenho insatisfatdrio, indicando limitacdes na
modelagem de padrdes complexos, especialmente em cendrios de dados desbalanceados.

Conclui-se, portanto, que modelos baseados em técnicas de ensemble, como Ran-
dom Forest, e arquiteturas de redes neurais sdo mais adequados para tarefas de previsdao
no mercado cambial. Ademais, o estudo reforca a relevancia do ajuste criterioso de hiper-
parametros, da validacdo cruzada e do uso de métricas complementares a acuricia, como
F1-score e matriz de confusdo, para uma avaliacdo mais robusta.
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