
Mapas Auto-Organizáveis e Autoencoders
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Abstract. This paper presents an idea that combines SOM (Self-Organizing
Map) and convolutional autoencoders to create a hierarchical and interpreta-
ble model. The proposed method replaces each neuron in the SOM grid with an
autoencoder. The SOM organizes the grid topologically, creating neighborhood
relationships among the autoencoders. Each autoencoder serves as a feature
extractor, as its encodings store the main features of an input in a latent repre-
sentation. In a separate training phase, with the SOM training already com-
pleted, the latent layers generated by the autoencoders are used in Multilayer
Perceptron (MLP) networks for image classification tasks.

Resumo. Este trabalho apresenta uma ideia que combina SOM (Self-
Organizing Map) e autoencoders convolucionais para criar um modelo
hierárquico e interpretável. O método proposto substitui cada neurônio da
grade do SOM por um autoencoder. O SOM organiza a grade topologicamente,
criando relações de vizinhança entre os autoencoders. Cada autoencoder fun-
ciona como um extrator de caracterı́sticas, já que suas codificações armazenam
as principais caracterı́sticas de uma entrada em uma representação latente. Em
um treinamento separado, com o treinamento do SOM já realizado, as camadas
latentes geradas pelos autoencoders são utilizadas em redes Perceptron Multi-
camadas (MLP) para tarefas de classificação de imagens.

1. Introdução
Nos anos 80, Teuvo Kohonen desenvolveu os mapas auto-organizáveis de caracterı́sticas
[Kohonen 1982], habitualmente chamados de Self-Organizing Map (SOM) ou Mapa
Auto-Organizável. SOM é um paradigma de redes neurais de aprendizado não super-
visionado que, por meio de uma topologia fixa, mapeia os dados de entrada e busca
por semelhanças e padrões. Isso torna o modelo particularmente útil para visualização
e interpretação de conjuntos de dados complexos. Os neurônios do SOM ficam dispostos
em uma grade, sendo a grade bidimensional mais utilizada por facilitar a visualização e
interpretação do resultado.

Outra rede neural de aprendizado não supervisionado é o Autoencoder. Um au-
toencoder é composto por dois processos que são conhecidos como encoder (codifica-
dor) e decoder (decodificador). Na etapa de codificação, o autoencoder codifica a en-
trada de modo a gerar uma representação mais compacta, comumente conhecida como
representação latente. Em seguida, essa representação latente é passada para o decodifi-
cador, que por sua vez tenta reconstruir a entrada a partir dessa representação compactada.
A Figura 1 exemplifica o funcionamento de um autoencoder [Bank et al. 2023].



Figura 1. Exemplo do funcionamento do autoencoder. A imagem de entrada
é comprimida, gerando uma representação latente (compressed representa-
tion) que é posteriormente decodificada, gerando uma reconstrução da entrada.
Fonte: Bank et al. 2023.

Neste trabalho, é proposta uma arquitetura hı́brida: serão combinados SOM e Au-
toencoder Convolucional de modo que haja a criação de grupos hierárquicos de autoenco-
ders a fim de que uma interpretação seja possı́vel. Cada célula da grade SOM é composta
por um autoencoder especializado. Além disso, cada autoencoder serve como um extra-
tor de caracterı́sticas e sua camada latente será utilizada no treinamento de classificação
com a rede MLP acoplada em cada autoencoder da grade. Para os experimentos, serão
utilizadas imagens do conjunto de dados MNIST [LeCun et al. 1998].

As principais contribuições deste trabalho incluem: (i) a proposição de um modelo
hierárquico e interpretável baseado na integração entre SOM e autoencoders convolucio-
nais; (ii) uma abordagem de classificação descentralizada, com redes MLP especializadas
por região da grade; e (iii) uma análise qualitativa e quantitativa da organização topológica
e do desempenho do modelo em um cenário com poucos dados de treinamento.

2. Fundamentação teórica

2.1. SOM

O treinamento do SOM consiste em encontrar um neurônio vencedor, também conhecido
como BMU (Best Matching Unit), em relação a uma amostra de entrada e fazer esse
neurônio se aproximar dessa amostra, assim como seus vizinhos da grade. O neurônio
vencedor é encontrado calculando uma distância euclidiana entre cada neurônio da grade
e a amostra alvo, o neurônio com menor distância será o vencedor. Os neurônios se
aproximarão da amostra alvo com uma intensidade que depende diretamente da função
de topologia, também conhecida como função de vizinhança. A função de vizinhança
utilizada nos experimentos é conhecida como Gaussian Bell, segundo a seguinte fórmula:

h(i, k, t) = e
− ||gi−gi||

2·σ(t)2 (1)

onde gi e gk representam a posição do neurônio vencedor e de outro neurônio na grade,
respectivamente. A operação ||gi−gk|| é a distância euclidiana entre os dois neurônios na
grade e σ(t) serve como um raio de vizinhança que decresce com o passar do treinamento,
diminuindo a intensidade da função e fazendo com que a adaptação dos neurônios aos
dados de entrada seja mais suave [Kriesel 2007]. A Figura 2 exemplifica uma distância
euclidiana entre os neurônios i e k, sendo que foi considerada a distância entre cada par
de neurônios na horizontal e vertical é equivalente a 1.



Figura 2. Exemplo de distância euclidiana entre neurônios em uma grade bidi-
mensional com topologia retangular. Fonte: Kriesel, 2007.

A aproximação de cada neurônio para uma amostra alvo de um conjunto de en-
trada durante o treinamento segue a seguinte regra:

ck(t+ 1) = ck(t) + η(t) · h(i, k, t) · (p− ck) (2)

onde ck(t) é o estado atual do neurônio, η(t) é a taxa de aprendizado, h(i, k, t) é a função
de topologia e (p− ck) é a diferença entre a amostra alvo e o neurônio. A taxa de aprendi-
zado η(t) está em função do tempo porque ela irá decrescer com o decorrer do treinamento
[Kriesel 2007].

2.2. Autoencoder convolucional

Um autoencoder baseado em Convolutional Neural Network (CNN) utiliza camadas con-
volucionais e pooling na etapa de codificação, para reduzir a dimensionalidade da entrada
e filtrar as caracterı́sticas mais importantes na camada latente. Já a parte de decodificação
utiliza camadas de convolução transposta, de modo que a dimensionalidade volte ao es-
tado inicial e a imagem seja reconstruı́da [Géron 2021]. CNNs são amplamente conhe-
cidas por sua eficácia quando se trata de extração de caracterı́sticas para classificação de
imagens [Jogin et al. 2018].

Embora um autoencoder seja uma rede neural de aprendizado não supervisio-
nado, é possı́vel utilizá-lo em uma rede neural com camadas totalmente conectadas de
aprendizado supervisionado para classificação. Nesse caso, o autoencoder servirá como
um extrator de caracterı́sticas, utilizando o codificador. Um autoencoder codifica uma
entrada em uma representação latente de dimensão menor, guardando as principais ca-
racterı́sticas da entrada nessa representação compactada. A camada latente e um rótulo
posteriormente são passados para o treinamento de classificação da rede neural totalmente
conectada [Bank et al. 2023].

2.3. Integrações entre SOM e autoencoders

Diversos trabalhos recentes têm explorado a combinação de SOMs com técnicas de
extração de caracterı́sticas. [Khacef et al. 2020] propuseram o uso de autoencoders como



pré-processadores para SOMs, melhorando a qualidade da organização topológica. Já
[Huijben et al. 2023] introduziram o SOM-CPC, uma integração entre SOM e aprendi-
zado contrastivo, com foco em sequências temporais.

Diferentemente desses trabalhos, a proposta deste artigo integra diretamente os
autoencoders à estrutura do SOM: cada célula da grade é um autoencoder convolucional
especializado, treinado com base em sua vizinhança topológica. Essa abordagem possi-
bilita uma organização hierárquica e interpretável.

3. Metodologia

3.1. Arquitetura geral do modelo

O modelo SOM utilizado é composto por uma grade bidimensional de tamanho 7× 7, na
qual cada célula corresponde a um exemplo de um autoencoder convolucional. Cada
autoencoder foi implementado com quatro camadas convolucionais 2D na etapa de
codificação, com filtros 3×3, ativação Rectified Linear Unit (ReLU) e operações de Max-
Pooling 2 × 2 após a segunda e a terceira camadas, para reduzir a dimensionalidade. Na
etapa de decodificação, são utilizadas quatro camadas de convolução transposta, também
com filtros 3 × 3 e ativação ReLU, intercaladas com operações de upsampling para res-
taurar a resolução original, sendo a última camada seguida de uma ativação Sigmoid para
limitar a saı́da entre 0 e 1.

Associada a cada autoencoder, há também uma rede MLP que recebe a
representação latente, com dimensão 32 × 3 × 3, e é composta por três camadas total-
mente conectadas: a primeira com 128 neurônios, a segunda com 64 neurônios (ambas
com ativação ReLU), e a última camada com 10 neurônios correspondentes às classes de
saı́da.

3.2. Treinamento

O modelo foi treinado utilizando o conjunto de dados MNIST. Na etapa de treinamento
não supervisionado do SOM, foram utilizadas 100 imagens. Para o treinamento supervi-
sionado das redes MLP, foram utilizadas outras 500 imagens, distintas daquelas utilizadas
na etapa anterior.

3.2.1. Treinamento não supervisionado

O treinamento segue uma adaptação da abordagem tradicional do SOM, com as seguintes
etapas:

1. Cada autoencoder da grade é inicializado com pesos aleatórios e mantém como
atributo uma imagem de referência, inicialmente composta por pixels aleatórios.

2. Para cada imagem do conjunto de treinamento, calcula-se a distância euclidiana
entre a imagem de entrada e a imagem reconstruı́da por cada autoencoder da grade.

3. O autoencoder cuja reconstrução mais se aproxima da imagem de entrada é defi-
nido como a BMU.

4. A BMU é atualizada por meio de backpropagation, com uma única época de treino
com o otimizador Adam e função de perda Mean Squared Error (MSE). A imagem
de treino é utilizada como alvo de reconstrução.



5. Os autoencoders vizinhos da BMU na grade têm seus pesos ajustados para se
aproximarem dos pesos da BMU. A regra de atualização segue a equação clássica
do SOM (2) e função de vizinhança Gaussian Bell (1).

6. Após a atualização dos pesos, cada autoencoder tenta reconstruir novamente a
imagem de entrada.

Esse processo é repetido para todas as amostras do conjunto de treinamento ao
longo de 1000 épocas, permitindo que a grade de autoencoders se organize topologica-
mente de acordo com as similaridades entre as imagens. Os valores iniciais de taxa de
aprendizado e raio de vizinhança são, respectivamente, 0,2 e 2,0.

3.2.2. Treinamento supervisionado

Após o treinamento não supervisionado do SOM com autoencoders, realiza-se a etapa de
classificação supervisionada, utilizando redes MLP associadas a cada autoencoder convo-
lucional. O processo segue as seguintes etapas:

1. Para cada imagem do conjunto de treinamento, identifica-se a BMU na grade já
treinada.

2. A imagem é codificada pela BMU, gerando uma representação latente.
3. Essa representação latente é utilizada como entrada da MLP associada à BMU,

enquanto o rótulo da imagem é utilizado como alvo para o treinamento supervisi-
onado.

4. A MLP da BMU é atualizada via backpropagation, utilizando 10 épocas de treino
com o otimizador Adam e funcão de perda Cross Entropy Loss, enquanto os vizi-
nhos na grade atualizam suas MLPs para se aproximarem dos pesos da MLP da
BMU, seguindo a regra do SOM (2) e função de vizinhança Gaussian Bell (1).

Essa estratégia permite que regiões topologicamente próximas na grade aprendam
a classificar imagens semelhantes, promovendo consistência na organização espacial e
melhorando a generalização do modelo. Foram utilizadas 1000 épocas no treinamento,
com valores iniciais de taxa de aprendizado e raio de vizinhança iguais a 0,2 e 2,0, res-
pectivamente.

4. Resultados e discussões

4.1. Resultado do treinamento não supervisionado

A Figura 3 apresenta a grade do SOM após o treinamento não supervisionado. Cada
célula da grade exibe a imagem que representa a especialização do respectivo autoen-
coder. Observa-se que o SOM organizou os autoencoders de modo que aqueles com
especializações semelhantes ficassem posicionados em regiões próximas, preservando a
coerência topológica. Algumas imagens de mesma classe ficaram distantes por possuı́rem
caracterı́sticas distintas, como espessura, inclinação etc. Além disso, algumas classes
apareceram poucas vezes, como é o caso do autoencoder que representa o número 4. O
tamanho da grade tem ligação direta com esse problema. Consequentemente, o resultado
do treinamento supervisionado é afetado, pois há pouca diversidade dentro de uma mesma
classe para encontrar a BMU mais adequada.



O modelo utilizado apresenta alta complexidade computacional, de modo que
utilizar mais imagens e uma grade maior levaria várias horas de treinamento, mas com
grande potencial de melhorar os resultados.

Figura 3. Resultado da grade após o treinamento não supervisionado.

4.2. Resultado do treinamento supervisionado
A métrica utilizada para analisar o desempenho da classificação foi a acurácia. Para ve-
rificar o resultado, foram utilizadas 10 mil imagens do conjunto de teste da base MNIST.
A acurácia obtida foi de 74,81%. O resultado está abaixo de modelos contemporâneos
que chegam a alcançar mais de 99,8% de acurácia como em [Byerly et al. 2021]. Porém,
o resultado obtido é promissor, considerando o número baixo de imagens utilizadas no
treinamento.

5. Conclusão
O modelo proposto se mostrou promissor ao alcançar uma acurácia de 74,81% na base
MNIST, mesmo com uma grade bidimensional pequena e um número reduzido de ima-
gens para treinamento. Este trabalho contribui com uma proposta de modelo hierárquico e
interpretável sob diferentes perspectivas. A principal fonte de interpretabilidade advém da
estrutura do SOM, que organiza os autoencoders em uma grade topológica. Cada célula da
grade apresenta uma reconstrução visual tı́pica do padrão que aquele autoencoder apren-
deu, permitindo uma inspeção direta dos tipos de entrada que ativam determinada região.

Para trabalhos futuros, será necessário otimizar o modelo para viabilizar o treina-
mento com um conjunto de dados maior e uma grade bidimensional de maior dimensão.
Além disso, a aplicação de técnicas de regularização e data augmentation também poderá
melhorar a acurácia e a generalização do modelo. Por fim, com um modelo mais maduro,
pretende-se realizar experimentos em conjuntos de dados de maior complexidade.
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TensorFlow, chapter 17, pages 437–446. Alta Books, 2nd edition.

Huijben, I., Mettes, P., and Snoek, C. G. M. (2023). Som-cpc: Unsupervised contras-
tive learning with self-organizing maps. IEEE Transactions on Pattern Analysis and
Machine Intelligence. Early Access.

Jogin, M. et al. (2018). Feature extraction using convolution neural networks (cnn) and
deep learning. In 2018 3rd IEEE International Conference on Recent Trends in Electro-
nics, Information & Communication Technology (RTEICT), pages 2319–2323. IEEE.
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