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Abstract. This work evaluates a method for selecting Self-Organizing Maps ba-
sed on the quality of topological preservation and representation of the neural
network input data for clustering benchmark data based on the segmentation of
the neural network weights. We evaluated five clustering algorithms: k-means,
hierarchical agglomerative, and three methods based on graph partitioning. The
results showed that the method for selecting the best neural network was ef-
fective for all four databases evaluated, although it did not generate optimal
results. We observed that the performance of the clustering algorithms varies
according to the type of data, with k-means presenting good performance for
hyperspherical data and for the Iris database, the agglomerative hierarchical
method being more effective for the MNIST database, and a method based on
graph partitioning being more effective for data with arbitrary structure.

Resumo. Este trabalho avalia um método de selecdo de Mapas Auto-
Organizados a partir da qualidade da preservagdo topoldgica e representa¢do
dos dados de entrada da rede neural para fins de clusterizacdo de dados de
benchmark a partir da segmentacdo dos pesos da rede neural. Foram avalia-
dos cinco algoritmos de clusterizacdo: k-médias, hierdrquico aglomerativo e
trés métodos baseados no particionamento de grafos. Os resultados mostra-
ram que o método de selecdo da melhor rede neural foi efetivo para todas as
quatro bases de dados avaliadas, embora nédo tenha gerado resultados 6timos.
Observou-se que o desempenho dos algoritmos de clusterizacdo varia conforme
o tipo de dado, com o k-médias apresentando bom desempenho para dados hi-
peresféricos e para a base Iris, o método hierdrquico aglomerativo sendo mais
efetivo para a base MNIST e um método baseado no particionamento de grafos
mais efetivo para dados com estrutura arbitrdria.

1. Introducao

Os Mapas Auto-Organizaveis (SOM) sdo um tipo de rede neural artificial ndo-
supervisionada, com aprendizado competitivo. Destaca-se na visualizacdo, compressao
e, principalmente, na clusterizacao de dados [Kohonen 2001]. Essa rede neural consegue
reduzir grandes volumes de dados de entrada n para um nimero muito menor m de veto-
res de codigo, ou pesos, mantendo as caracteristicas estatisticas e topoldgicas dos dados
originais. Essa capacidade permite que a clusterizagcdo seja realizada nos pesos da rede



em vez dos dados, utilizando algoritmos classicos como k-médias ou heuristicas baseadas
em grafos, como as de [Silva et al. 2024, Silva and Costa 2011, Costa and Netto 2003].
A grande vantagem do SOM reside em sua habilidade de representar estruturas de dados
complexas, que seriam dificeis de identificar por outros métodos, como exemplificado em
estudos sobre a diversidade da agropecuadria brasileira [Silva et al. 2022] e 0 mapeamento
de culturas com dados satelitais [Santos et al. 2021].

Apesar do bom desempenho da rede SOM nessas tarefas devido a sua robus-
tez, um desafio se impde. A definicdo dos seus hiperparametros como dimensao
(1D ou 2D), nimero de neurdnios (vetores de cddigo), funcdo de vizinhanga, for-
mato da grade (retangular, hexagonal) e taxa de aprendizagem. Além disso, temos
que para o processo de aprendizado sequencial estocdstico e ndo deterministico, a rede
SOM pode gerar resultados diferentes para a mesma parametrizacao inicial. A mai-
oria dos trabalhos apresentados na literatura utilizam o erro de quantizacdo ou o erro
topolégico como indicador da qualidade da representacdo dos dados pelos pesos da
rede SOM [Appukuttan et al. 2025, Hameed et al. 2024]. No entanto, como observou
[Delgado et al. 2017] essas medidas ndo avaliam a qualidade da representacao topoldgica
dos dados de entrada pelos vetores de cddigo. Ou seja, os pesos podem se aproximar dos
dados de entrada, mas ndo representarem corretamente sua topologia.

Dos indices propostos na literatura para avaliar a qualidade da rede neu-
ral SOM treinada quanto ao mapeamento topoldgico destacamos o Erro Combinado
[Kaski and Lagus 1996] e a funcdo topogréfica [Villmann et al. 1997]. No primeiro temos
a combinacdo do erro de quantizacdo com o erro topografico representado pela distancia
na grade neural entre o primeiro e o segundo Best Match Unit (BMU) para cada ve-
tor de entrada. A funcdo topogréfica se apoia na definicdo de campos receptivos para a
determinacdo da preservacao topoldgica. Nesse caso, a rede neural terd preservado a to-
pologia se dados adjacentes no espaco de entrada forem mapeados a neurdnios vizinhos,
e se neurdnios adjacentes na grade neural forem mapeados a campos receptivos vizinhos
no espago de entrada.

A partir das caracteristicas desses indicadores de qualidade da rede SOM, Delgado
et al. (2017) propdem um método de escolha da melhor rede SOM. Primeiro as redes
SOM seriam agrupadas por grupos com diferentes hiperparametros exceto o nimero de
neurdnios. De cada grupo desses seria extraida a rede SOM com menor Erro cominado.
E dentre essas redes selecionadas com diferentes tamanhos seria escolhida aquela com
menor valor para a funcao topogréfica, ja que neste caso nao teriamos o efeito do tamanho
da rede sobre esse indicador.

Para a clusterizacdo da rede SOM observa-se pelo menos trés abordagens. Na
primeira, € definida uma rede SOM unidimensional onde cada nerdnio representa um
grupo [Delgado et al. 2017]. Na segunda € aplicado um método de clusterizacao sobre os
pesos da rede neural, em geral k-médias ou hierdrquico aglomerativo [Silva et al. 2022,
Santos et al. 2021]. Na terceira abordagem, os pesos sdo segmentados a partir de
uma estratégica de particionamento de grafos [Silva et al. 2024, Silva and Costa 2011,
Costa and Netto 2003]. Neste ultimo caso sdo usadas informagdes da rede SOM como
nimero de observacdes associadas a cada neurdnio, densidade de observagdes entre
neuronios, distancia entre os vetores de peso etc. Segundo [Delgado et al. 2017] e
[Melo Riveros et al. 2019] o método k-médias tende a encontrar grupos com nimero ba-



lanceados de elementos e € mais susceptivel a minimos locais, enquanto que no método
hierarquico aglomerativo seria dificil definir uma heuristica para particionamento do den-
dograma [Vesanto and Alhoniemi 2000].

Este estudo parte da hipétese que o desempenho do algoritmo de clusterizagao
estd relacionado as caracteristicas dos dados. Desta forma propomos avaliar o desempe-
nho de diferentes métodos de clusterizacdo de dados baseados no Mapa Auto-Organizavel
de Kohonen sobre quatro conjuntos de dados de benchmark. No trabalho, avaliamos o
método proposto por [Delgado et al. 2017] para sele¢cao da melhor rede SOM para a ta-
refa de clusterizacdo de diferentes conjuntos de dados a partir da segmentacao dos pesos
W da rede SOM treinada usando cinco algoritmos: k-médias, hierdrquico aglomerativo,
e trés baseados no particionamento de grafos [Silva et al. 2024, Silva and Costa 2011,
Costa and Netto 2003]. Foram avaliadas as correlagdes entre os indices de qualidade de
preservacdo topoldgica (erro combinado e fungdo topografica) e o tamanho m da rede
neural usada na clusterizagao.

2. Materiais e métodos

2.1. Mapas Auto-Organizaveis

Dado um conjunto de dados de dados X no espago M C R? podemos construir uma
rede neural ndo-supervisionada Mapa Auto-Organizavel com grade no espago A do
espaco d:-dimensional com m neur6nios e topologia retangular ou hexagonal, podemos
gerar um mapeamento com preservacao topolégica M, do dado no espaco A. Para
cada neurdnio i € A temos um vetor de pesos w; € R¢ associado. O mapeamento
Ma = (Vap,Vra)de M para A € definido por Wy, _, 4 € o inverso por W 4_, ;.
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com i*(x) como representacdo do neurdnio 7 e seu peso w;«(;) mais proximo de
v (Best Match Unit), com ||w;=z) — v|| < [lw; — z||. A rede neural SOM proposta por
Kohonen (2001) ¢ uma rede bidimensional artificial que possui neuronios representados
por vetores de pesos distribuidos em uma grade retangular ou hexagonal. O processo de
aprendizagem de maquina dessa proposta de rede € divido em trés etapas: competitiva,
cooperativa e adaptativa. Na fase competitiva, os valores de entrada de dados sdo apre-
sentados a rede neural, a qual seleciona o vetor de pesos da grade com a menor distancia
ao vetor de entrada, neurdnio i*(x). Logo em seguida, na fase cooperativa, a vizinhanga
¢ entdo definida com base na fung@o de vizinhanga h(t) (e.g., fun¢do Gaussiana). Na fase
adaptativa os valores dos pesos dos neurdnios associados a rede na fase adaptativa sdo
atualizados de acordo com w(t + 1) = w(t) + a(t)h(t)(z(t) — w(t)), que representa a
atualizac@o dos pesos W no tempo ¢ e com fungdo da taxa de aprendizagem «(t).

2.2. Avaliacao da qualidade da rede SOM

Ap6s o processo de aprendizado de maquina e obtencdo de uma rede SOM treinada que
possui cada neurdnio associado a uma observacdo da base de dados, pode-se, segundo
[Kohonen 2001], aferir a qualidade dessa rede a partir da avaliagdao da representatividade



dos dados X pelos pesos W e pela qualidade da preservacao topoldgica do mapeamento
M 4 por métodos, como o erro de quantizag@o e a funcdo topografica.
> [Jor—wis |

O erro de quantizagdo F, = “~—— representa a média das distancias entre

cada amostra de dados ao vetor de pesos do neurdnio de melhor correspondéncia (BMU)
mas ndo avalia a preservacgdo topoldgica [Kohonen 2001]. O Erro topoldgico corresponde
a propor¢ao de observacdes cujo segundo BMU nao é vizinho, na grade neural, do pri-
meiro BMU. Neste caso, temos uma avaliacdo indireta e incompleta da preservacdo to-
poldgica.

Dado A, uma grade retangular de dimensdo d4, e M, um manifold M C Re.
Um mapa My = (Van, Vara) de M é preservado topologicamente se ambos 0s
mapeamentos (W, 4) de M para Ae (V4_,,) de A para M sdo preservados em relagdo
a vizinhanca.

* O mapeamento (V,,_, ) é preservado em relagdo a vizinhanga se somente se a
localiza¢do dos vetores w;, w; que sdo adjacentes em M pertencem a vértices 7, j
que sdo também adjacentes em A, segundo a norma maxima ||.||

max*

* O mapeamento (V4_,,,) é preservado em relagdo a vizinhanga se somente se a
localizagao dos vértices 7, j que sdo adjacentes em A, de acordo com a norma eu-
clidiana ou de acordo com a soma das normas ||.||s-, estdo relacionados a vetores
de pesos w; ,w; € M vizinhos.

Destacamos duas métricas que levam em consideracdo a preservagao topoldgica
da rede neural SOM: a fun¢do topografica [Villmann et al. 1997] e o erro combinado
[Kaski and Lagus 1996], adotadas na proposta de [Delgado et al. 2017] para escolha da
melhor rede SOM treinada.

2.2.1. Funcao topografica

Para a grade de neurdnios A, calcula-se a triangulac@o induzida de Delaunay D), grafo
que conecta apenas os vetores de pesos w; € w; com regides adjacentes no poliedro mas-
carado de Voronoi V;, f/j, sendo que dp,, (7, j) representa a métrica associada & menor
distancia entre dois neur6nios i, j em Dj; e #{.} denota a cardinalidade do conjunto.

Define-se as fungdes de preservagdo topoldgica (¥, 4) e (V4_,5s) conforme as Egs.

Filk) S HG] i =G llae > kidpy(Grd) = 13 e fi(=k) < #0] li-jllp =
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Desse modo, a fungio f;(k) mede preservagdo da vizinhanga do mapeamento de
M em A ao computar casos em que neurdnios nao vizinhos em A possuem uma relagio
de vizinhanga em D), segundo a métrica dp,, (i, j), enquanto a fung¢do f;(—k) mede a
preservacgao da vizinhanga de A em M, ao contabilizar casos de neurdnios vizinhos em A
que ndo sejam vizinhos em Dj;. Segundo [Villmann et al. 1997], a fungdo topografica ¢’
pode entdo ser definida como a média dos valores da funcdo f; para todos componentes j
da grade de neur6nios A, onde k = 1, ..., m — 1. Conforme descrito pela Eq. 2.
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Conforme [Delgado et al. 2017], o valor de ¢ para k = 0 representa a
combinagdo das medidas de ndo conformidades da preservagdo topoldgica f;(k) e fi(—k),
sendo portanto, usada como medida de referéncia da fun¢do topografica. Quanto menor
»3(0) melhor a rede SOM preservou a topologia dos dados de entrada. Neste caso, 2
medida que a rede SOM cresce a primeira medida tende a crescer, enquanto a segunda
tende a ser menor. Dessa forma, segundo [Delgado et al. 2017], uma medida anularia a
outra de forma que para a fungdo topografica ndo haveria correlagdo entre o nimero de
neurdnios e o somatoério destas duas medidas.

2.2.2. Erro cominado (EC)

Para uma dada amostra de dados x;, primeiro calculamos suas duas melhores unidades
correspondentes (BMUs), 77 e 5. Em seguida, calculamos a soma das distancias eucli-
dianas de x; até o vetor prototipo w;; do segundo BMU, comegando com a distancia
de x; a wy; e, posteriormente, seguindo o caminho mais curto até wy;, passando ape-
nas pelas unidades vizinhas no mapa. Seja p um caminho no mapa de comprimento
P >=1,de p(0) = i} a p(L) = i3, tal que p(k) e p(k + 1) devem ser vizinhos para
k = 0...P — 1. A distancia ao longo do caminho mais curto no mapa é calculada como:
— 2 ; P-1 2
EC; = z; — Wiy E —i—mpln Zkzo | Wp(k+1) — Wp(k) 13-

Por fim, o erro combinado (EC) é a média dessa distincia sobre as amostras de
entrada: £C' = % > EC;. Segundo [Delgado et al. 2017], 2 medida que a rede SOM
cresce (em termos de nimero de neurdnios m) o erro de quantiza¢do diminui, assim como
a distancia entre os BMUs, sugerindo forte correlacdo negativa entre esse indice e o ta-
manho m da rede neural.

2.3. Clusterizacao dos pesos W do mapa neural

Para clusterizacdo dos pesos da rede neural SOM treinada optamos por avaliar os algo-
ritmos k-médias com a definicio do melhor nimero de agrupamento a partir do método
de identificacdo automatica do cotovelo no grafico da soma da variacao total intragrupos
para cada valor de c avaliado. Também aplicamos o algoritmo hierdrquico aglomera-
tivo, definindo a melhor particio do dendograma a partir do indice Silhouette. Estes
dois algritmos de clusterizagdo podem ndo ser adequados para todos os conjuntos de da-
dos, incluindo aqueles com elevada complexidade em termos de estrutura e distribui¢ao
dos dados em cada um dos agrupamentos. Para isto avaliamos trés algoritmos baseados
na segmentacao dos neurdnios da rede SOM treinada, considerando a mesma como um
grafo ndo-direcionado. Onde os neurdnios ¢ representam os nds do grafo, e as relacdes de
vizinhanca que conecta 0s neurdnios os vértices.



Dado uma rede treinada como um grafo G = (V, E), o algoritmo proposto por
[Costa and Netto 2003] visa eliminar as arestas consideradas inconsistentes e formar agre-
gados a partir dos nds(neurdnios) que permanencerem conectados conforme o Algortimo
1. Neste algoritmo o nimero de agrupamentos ¢ ndo € pré-determinado e temos trés
parametros definidos empiricamente.

Algorithm 1 Clusterizagdo proposta por [Costa and Netto 2003]
Require: G = (V, E) — SOM treinada como grafo ndo-orientado
Require: H; — Nivel de ativa¢do do neur6nio ¢
Require: d(i, j) — Distancia entre os pesos w; ¢ w; da rede neural
Require: w — Hiperparametro definido empiricamente
for cada par de neur6nio adjacente (3, j), a aresta calculada serd inconsistente se: do
* d(i,7) supera em duas unidades a distdncia média dos outros neurdnios adja-
centesaioua j.
* 5 e j tiverem atividade H abaixo de 50% do minimo permitido H,,;, ou um dos
neurdnios € inativo H; = 0, dado H,in, = wWHeq, 0.1 S w < 0.6 € Hypeqg = -
* A distancia entre os centréides dos conjuntos de dados associados aos neurdnios
i e j excede por duas unidades a aresta d(i, j).
end for
Remove de arestas inconsistentes. Cada aresta inconsistente (i,j) resultard em uma
conexao nula no enderego (4, j) da matriz de adjacéncia.
Atribui rétulos distintos para cada conjunto de neurdnios conectados.

O algoritmo proposto por [Silva and Costa 2011] (Algoritmo 2) segue a mesma
proposta do particionamento do grafo pela eliminagdo de arestas consideradas inconsistes
proposta por [Costa and Netto 2003]. No entanto, neste caso temos apenas um hiper-
parametro, v, definido empiricamente e que varia no intervalo 0 < v < 1.

Algorithm 2 Clusterizagdo do SOM proposto por [Silva and Costa 2011]
Require: G = (V, E) — SOM treinada como grafo ndo-orientado
T «+ Arvore Geradora Minima de G usando D como pesos das arestas
for cada aresta (i, ) do
Calcule o indice Davis-Bouldin (DBI) para neur6nios adjacentes 7 € 7 de acordo
com a topologia da rede neural
Se DBI(i,j) > v entdo a aresta (7, j) é considerada inconsistente
end for
Associe um rétulo para cada grupo de nds conectados em G

[Silva et al. 2024] propde a segmentagao em £ “clusters” baseando-se na distancia
e na densidade entre neurdnios. Primeiro, calcula-se a arvore geradora minima de G
usando D como os pesos das arestas. Em seguida, calcula-se o custo de cada aresta de 7',
por meio do indice DBI. Por fim, poda-se £ — 1 arestas de 7’ com 0os menores custos e
atribui-se um rétulo de “cluster” para cada conjuto de nds conectados em 7.

O algoritmo proposto por [Silva et al. 2024] primeiro calcula a Arvore de Ex-
tensdo Minima (MST), depois define o valor das arestas restantes como o DBI entre os
neurdnios e poda k — 1 arestas com os menores custos, isolando grupos de neurdnios. k é
um parametro a ser definido no inicio e significa o nimero de clusters que se deseja obter.



Algorithm 3 Clusterizagdo do SOM proposto por [Silva et al. 2024]

Require: G = (V, E') — SOM treinada como grafo ndo-orientado
Require: H — Nivel de ativacao do neurdnio
Require: D — Matriz de distancia entre os pesos W da rede neural
Require: c— Numero desejado de agrupamentos

T + Arvore Geradora Minima de G usando D como pesos das arestas

for cada aresta (u,v) € T do

cost(u,v) < DBI(u,v)

end for

Poda de ¢ — 1 arestas em 7' com 0os menores custos

Associe um rétulo para cada grupo de nos conectados em 1T’

3. Bases de dados avaliadas e procedimento experimental

Foram avaliadas quatro bases de dados de benchmark. O primeiro conjunto, Gaussiana, €
artificial e simula trés conjuntos de dados (N = 100) em duas dimensdes com distribui¢do
Gaussiana. O segundo conjunto € a base Iris [Fisher 1936] com 150 observagdes, quatro
dimensdes, trés classes, sendo duas nao-linearmente separdveis. A terceira base de da-
dos € a Chainlink [Ultsch et al. 1994], com 1000 observag¢des, tridimensional e com duas
classes que representam dois elos de corrente ndo-lineramente separdaveis. A quarta base
€ a MNIST [Deng 2012], com 10.000 observagdes, 248 dimensodes e 10 classes que repre-
sentam os digitos de 0 a 9.

O experimento seguiu as etapas descritas a seguir para cada base de dados anali-
sada:

1. Defini¢do dos hiperparametros (raio inicial da funcdo de vizinhanca, taxa de
aprendizagem, tamanho da grade de neurdnios, dimensionalidade e tipo de to-
pologia) que serdo avalidos para as redes SOM avaliadas.

2. Logo apds, para cada configuracdo de rede treinada, calcula-se os valores do
Erro combinado e da func¢do topogréfica. Foram avaliadas as correlacdes entre
os indices de qualidade de preservagdo topoldgica (erro combinado e fung¢do to-
pografica) e o tamanho m da rede neural usada na clusterizacao.

3. Baseado em [Delgado et al. 2017], seleciona-se as redes com menor violacdo to-
poldgica para cada tamanho de grade m, de acordo com o Erro combinado.

4. Em seguida, seleciona-se a rede com a menor violacdo de topologia, comparando
os valores de funcdo topogréfica obtidos para diferentes tamanhos de grade gera-
das pelo passo anterior.

5. Para efeito comparativo também foi selecionada para andlise a pior rede SOM
conforme o método definido em [Delgado et al. 2017].

6. Aplica-se os cinco algoritmos de clusterizacao sobre as redes SOM selecionadas.

7. Como todas as bases de dados sdo rotuladas, para cada clusterizacao sao calcula-
dos os indices de qualidade da clusterizacaio NMI, ARI e ACC.

8. Foi aplicado teste estatistico de correlacdo entre os indices de mensuragcdo da qua-
lidade da preservacao topoldgica (erro cominado e fun¢do topogréfica) e o tama-
nho da rede m.



4. Resultados e Discussao

Para todas as bases de dados foram avaliadas redes neurais SOM bi e unidimensional, com
grade hexagonal e retangular, funcdo de vizinhanca gaussiana, diferentes raios iniciais
para essa fungdo (0.5,1.0,1.5,2.0,2.5,3.0) e diferentes taxas de aprendizagem para a
aprendizagem sequencial (0.01,0.05,0.1,0.5). Para as bases Iris, Gaussian e Chainlink
foram variadas as dimensdes da rede SOM ((5 x4), (5% 5), (6 x5), (1x30), (5x7), (8%
5),(8%x6),(9x6),(9x7),(10,8)), para a base MNIST foram avaliadas redes um pouco
maiores ((8 x 8), (15 x 10), (20 x 20), (25 x 30), (30 x 30)).

Para cada uma dessas bases foi escolhida a melhor rede SOM a partir do critério
estabelecido por [Delgado et al. 2017]. Para o dataset Gaussiano foi definida como a
melhor a seguinte configuragcdo de rede SOM 2D 10 x 8 com raio inicial igual a 3.0, taxa
de aprendizagem igual a 0.5 e topologia retangular. Para as bases Chainlink e Iris foi
definida como a melhor rede SOM a configuracao bidimensional 10 x 8 com raio inicial
igual a 2.0, taxa de aprendizagem igual a 0.5 e topologia retangular.

A andlise do teste de correlacdo entre os indices de qualidade da rede SOM (Erro
combinado e Fun¢do topografica) mostra que a correlagdo negativa prevista para o Erro
combinado foi de menor intensidade e ndo estatisticamente significativa para todas as ba-
ses de dados (Tabela 1). Isto sugere que a componente topoldgica do indicador (caminho
entre o primeiro e segundo BMU) ndo decresce linearmente a medida que a rede SOM (m)
cresce. Enquanto que para o valor para a fungdo topogréfica observamos forte correlagao
positiva e significativa para todas as bases. Isto sugere que uma das componentes (f;(k) e
fi(—k)) desse indice cresce mais que a outra, trazendo como consequéncia a ndo anula¢do
do efeito do tamanho da rede SOM.

Tabela 1. Teste de correlacao (Cor) entre o Erro combinado (Ec) e a funcao to-
pografica (Ft) e o nimero de neurénios (m). Entre colchetes temos o intervalo de
confianca ao nivel de 95% para a estatistica de correlacao.

Dado Cor( Ec, m) Cor( Ft, m)
Gaussian -0.10 [-0.28, 0.08] -0.83*** [-0.88, -0.77
Chainlink -0.46*** [-0.59, -0.31] -0.79*** [-0.85 -0.71
Iris -0.24** [-0.40, -0.06]  -0.80*** [-0.86 -0.73
MNIST -0.25 [-0.48, 0.002] -0.75%%* [-0.85 -0.62

— e

A Tabela 2 mostra os resultados das clusterizagdes para a melhor e pior redes
neurais indicadas pelo método proposto por Delgado et al. (2017) tanto em termos do
ndmero ¢ de grupos encontrados como em termos dos indices NMI, ARI e ACC. Os
resultados nos permitem afirmar que o método proposto por [Delgado et al. 2017] auxi-
lia na identificacdo redes neurais SOM que melhor preservam a topologia dos dados de
entrada, embora o desempenho do algoritmo de clusteriza¢do dependa das caracteristicas
dos dados de entrada. Para a base Gaussian os melhores desempenhos foram obtidos pelos
algoritmos de clusterizacdo hierdrquico aglomerativo e k-médias, para a base Chainlink
o melhor desempenho foi obtido pelo algoritmo proposto por [Silva et al. 2024], para a
base Iris 0 melhor desempenho foi obtido pelo algoritmo k-médias. Para a base MNIST
o método hierarquico aglomerativo obteve o melhor resultado.



Tabela 2. Resultados da clusterizacao dos dados a partir dos cinco algoritmos
avaliados usando os indices NMI, ARl e ACC como indicadores da qualidade da
particao em ¢ grupos para a melhor e pior redes SOM indicada pelo método pro-
posto por Delgado et al. (2017). Os melhores clusterizadores para cada conjunto
de dados estao destacados em negrito.

Base Algoritmo de clusteriza¢ao Melhor rede SOM Pior rede SOM
¢ NMI ARI ACC ¢ NMI ARI ACC
K-means 3 085 081 095 3 086 0.89 0.96
H.A. 3 087 083 096 3 086 0.89 0.96
Gaussian  Silva et al. (2024) 3 042 052 062 3 031 017 054
Silva e Costa (2011) 14 044 057 056 4 073 0.70 0.82
Costa e Netto (2003) 2 004 006 044 1 000 0.00 0.33
K-means 4 025 034 044 4 030 020 042
H.A. 9 019 041 028 8 050 025 0.30
Chainlink Silva et al. (2024) 5 075 0.72 086 2 021 0.09 0.65
Silva e Costa (2011) 14 0.10 031 024 4 043 031 0.60
Costa e Netto (2003) 4 067 069 073 1 000 0.00 0.50
K-means 3 076 0.77 091 4 0.72 0.65 0.83
H.A. 2 056 073 067 2 073 057 0.67
Iris Silva et al. (2024) 3 05 071 068 3 0.68 054 0.67
Silva e Costa (2011) 9 019 033 041 4 060 051 0.70
Costa e Netto (2003) 8 023 041 054 1 00 0.0 0.33
K-means 8 052 068 066 5 049 0.31 045
H.A. 10 0.60 0.75 0.72 10 0.78 0.65 0.77
MNIST Silva et al. (2024) 13 0.002 0.09 0.14 3 022 0.05 020
Silva e Costa (2011) 60 031 063 035 9 060 028 048
Costa e Netto (2003) 1 000 000 010 1 0.00 0.00 0.10

5. Conclusoes

Conclui-se que o método de selecio da melhor rede SOM proposto por
[Delgado et al. 2017] € satisfatério, mas que foi observada correlacdo negativa entre o
tamanho m da rede SOM e a fungio topogréfica ¢ (0), que acaba induzindo como esco-
lha da melhor rede SOM aquela com o maior numero de neuronios.

Observou-se que o desempenho do clusterizador dos pesos da rede SOM depende
das caracteristicas do dado de entrada. Sendo que o k-means obteve os melhores resul-
tados para as bases Gaussian e Iris, 0 método hierdarquico aglomerativo para as bases
Gaussian e MNIST e o método proposto por [Silva et al. 2024] para a base Chainlink.

Trabalhos futuros incluem a avaliagdo de outros métodos de avaliacdo da qua-
lidade do SOM quanto ao ajuste aos dados e a preservagdo topoldgica, a aplicagdo do
método de selecao dos hiperparametros em bases de dados mais complexas em termos de
dimensionalidade e nao-linearidade, e avaliacdo de outros métodos de clusterizagdao dos
dados a partir da segmentacao da rede neural SOM.
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