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Abstract. This work evaluates a method for selecting Self-Organizing Maps ba-
sed on the quality of topological preservation and representation of the neural
network input data for clustering benchmark data based on the segmentation of
the neural network weights. We evaluated five clustering algorithms: k-means,
hierarchical agglomerative, and three methods based on graph partitioning. The
results showed that the method for selecting the best neural network was ef-
fective for all four databases evaluated, although it did not generate optimal
results. We observed that the performance of the clustering algorithms varies
according to the type of data, with k-means presenting good performance for
hyperspherical data and for the Iris database, the agglomerative hierarchical
method being more effective for the MNIST database, and a method based on
graph partitioning being more effective for data with arbitrary structure.

Resumo. Este trabalho avalia um método de seleção de Mapas Auto-
Organizados a partir da qualidade da preservação topológica e representação
dos dados de entrada da rede neural para fins de clusterização de dados de
benchmark a partir da segmentação dos pesos da rede neural. Foram avalia-
dos cinco algoritmos de clusterização: k-médias, hierárquico aglomerativo e
três métodos baseados no particionamento de grafos. Os resultados mostra-
ram que o método de seleção da melhor rede neural foi efetivo para todas as
quatro bases de dados avaliadas, embora não tenha gerado resultados ótimos.
Observou-se que o desempenho dos algoritmos de clusterização varia conforme
o tipo de dado, com o k-médias apresentando bom desempenho para dados hi-
peresféricos e para a base Iris, o método hierárquico aglomerativo sendo mais
efetivo para a base MNIST e um método baseado no particionamento de grafos
mais efetivo para dados com estrutura arbitrária.

1. Introdução
Os Mapas Auto-Organizáveis (SOM) são um tipo de rede neural artificial não-
supervisionada, com aprendizado competitivo. Destaca-se na visualização, compressão
e, principalmente, na clusterização de dados [Kohonen 2001]. Essa rede neural consegue
reduzir grandes volumes de dados de entrada n para um número muito menor m de veto-
res de código, ou pesos, mantendo as caracterı́sticas estatı́sticas e topológicas dos dados
originais. Essa capacidade permite que a clusterização seja realizada nos pesos da rede



em vez dos dados, utilizando algoritmos clássicos como k-médias ou heurı́sticas baseadas
em grafos, como as de [Silva et al. 2024, Silva and Costa 2011, Costa and Netto 2003].
A grande vantagem do SOM reside em sua habilidade de representar estruturas de dados
complexas, que seriam difı́ceis de identificar por outros métodos, como exemplificado em
estudos sobre a diversidade da agropecuária brasileira [Silva et al. 2022] e o mapeamento
de culturas com dados satelitais [Santos et al. 2021].

Apesar do bom desempenho da rede SOM nessas tarefas devido a sua robus-
tez, um desafio se impõe. A definição dos seus hiperparâmetros como dimensão
(1D ou 2D), número de neurônios (vetores de código), função de vizinhança, for-
mato da grade (retangular, hexagonal) e taxa de aprendizagem. Além disso, temos
que para o processo de aprendizado sequencial estocástico e não determinı́stico, a rede
SOM pode gerar resultados diferentes para a mesma parametrização inicial. A mai-
oria dos trabalhos apresentados na literatura utilizam o erro de quantização ou o erro
topológico como indicador da qualidade da representação dos dados pelos pesos da
rede SOM [Appukuttan et al. 2025, Hameed et al. 2024]. No entanto, como observou
[Delgado et al. 2017] essas medidas não avaliam a qualidade da representação topológica
dos dados de entrada pelos vetores de código. Ou seja, os pesos podem se aproximar dos
dados de entrada, mas não representarem corretamente sua topologia.

Dos ı́ndices propostos na literatura para avaliar a qualidade da rede neu-
ral SOM treinada quanto ao mapeamento topológico destacamos o Erro Combinado
[Kaski and Lagus 1996] e a função topográfica [Villmann et al. 1997]. No primeiro temos
a combinação do erro de quantização com o erro topográfico representado pela distância
na grade neural entre o primeiro e o segundo Best Match Unit (BMU) para cada ve-
tor de entrada. A função topográfica se apoia na definição de campos receptivos para a
determinação da preservação topológica. Nesse caso, a rede neural terá preservado a to-
pologia se dados adjacentes no espaço de entrada forem mapeados a neurônios vizinhos,
e se neurônios adjacentes na grade neural forem mapeados a campos receptivos vizinhos
no espaço de entrada.

A partir das caracterı́sticas desses indicadores de qualidade da rede SOM, Delgado
et al. (2017) propõem um método de escolha da melhor rede SOM. Primeiro as redes
SOM seriam agrupadas por grupos com diferentes hiperparâmetros exceto o número de
neurônios. De cada grupo desses seria extraı́da a rede SOM com menor Erro cominado.
E dentre essas redes selecionadas com diferentes tamanhos seria escolhida aquela com
menor valor para a função topográfica, já que neste caso não terı́amos o efeito do tamanho
da rede sobre esse indicador.

Para a clusterização da rede SOM observa-se pelo menos três abordagens. Na
primeira, é definida uma rede SOM unidimensional onde cada nerônio representa um
grupo [Delgado et al. 2017]. Na segunda é aplicado um método de clusterização sobre os
pesos da rede neural, em geral k-médias ou hierárquico aglomerativo [Silva et al. 2022,
Santos et al. 2021]. Na terceira abordagem, os pesos são segmentados a partir de
uma estratégica de particionamento de grafos [Silva et al. 2024, Silva and Costa 2011,
Costa and Netto 2003]. Neste último caso são usadas informações da rede SOM como
número de observações associadas a cada neurônio, densidade de observações entre
neurônios, distância entre os vetores de peso etc. Segundo [Delgado et al. 2017] e
[Melo Riveros et al. 2019] o método k-médias tende a encontrar grupos com número ba-



lanceados de elementos e é mais susceptı́vel a mı́nimos locais, enquanto que no método
hierárquico aglomerativo seria difı́cil definir uma heurı́stica para particionamento do den-
dograma [Vesanto and Alhoniemi 2000].

Este estudo parte da hipótese que o desempenho do algoritmo de clusterização
está relacionado às caracterı́sticas dos dados. Desta forma propomos avaliar o desempe-
nho de diferentes métodos de clusterização de dados baseados no Mapa Auto-Organizável
de Kohonen sobre quatro conjuntos de dados de benchmark. No trabalho, avaliamos o
método proposto por [Delgado et al. 2017] para seleção da melhor rede SOM para a ta-
refa de clusterização de diferentes conjuntos de dados a partir da segmentação dos pesos
W da rede SOM treinada usando cinco algoritmos: k-médias, hierárquico aglomerativo,
e três baseados no particionamento de grafos [Silva et al. 2024, Silva and Costa 2011,
Costa and Netto 2003]. Foram avaliadas as correlações entre os ı́ndices de qualidade de
preservação topológica (erro combinado e função topográfica) e o tamanho m da rede
neural usada na clusterização.

2. Materiais e métodos

2.1. Mapas Auto-Organizáveis

Dado um conjunto de dados de dados X no espaço M ⊆ Rd podemos construir uma
rede neural não-supervisionada Mapa Auto-Organizável com grade no espaço A do
espaço d′-dimensional com m neurônios e topologia retangular ou hexagonal, podemos
gerar um mapeamento com preservação topológica MA do dado no espaço A. Para
cada neurônio i ∈ A temos um vetor de pesos wi ∈ ℜd associado. O mapeamento
MA = (ΨA→M ,ΨM→A) de M para A é definido por ΨM→A e o inverso por ΨA→M .

MA =

{
ΨM→A : M → A; x ∈M 7→ i∗(x) ∈ A

ΨA→M : A→M ; i ∈ A 7→ wi ∈M
(1)

com i∗(x) como representação do neurônio i e seu peso wi∗(x) mais próximo de
v (Best Match Unit), com

∥∥wi∗(x) − v
∥∥ ≤ ∥wj − x∥. A rede neural SOM proposta por

Kohonen (2001) é uma rede bidimensional artificial que possui neurônios representados
por vetores de pesos distribuı́dos em uma grade retângular ou hexagonal. O processo de
aprendizagem de máquina dessa proposta de rede é divido em três etapas: competitiva,
cooperativa e adaptativa. Na fase competitiva, os valores de entrada de dados são apre-
sentados à rede neural, a qual seleciona o vetor de pesos da grade com a menor distância
ao vetor de entrada, neurônio i∗(x). Logo em seguida, na fase cooperativa, a vizinhança
é então definida com base na função de vizinhança h(t) (e.g., função Gaussiana). Na fase
adaptativa os valores dos pesos dos neurônios associados à rede na fase adaptativa são
atualizados de acordo com w(t + 1) = w(t) + α(t)h(t)(x(t) − w(t)), que representa a
atualização dos pesos W no tempo t e com função da taxa de aprendizagem α(t).

2.2. Avaliação da qualidade da rede SOM

Após o processo de aprendizado de máquina e obtenção de uma rede SOM treinada que
possui cada neurônio associado a uma observação da base de dados, pode-se, segundo
[Kohonen 2001], aferir a qualidade dessa rede a partir da avaliação da representatividade



dos dados X pelos pesos W e pela qualidade da preservação topológica do mapeamento
MA por métodos, como o erro de quantização e a função topográfica.

O erro de quantização Eq =

n∑
k=1
∥xk−wi∗(x)∥

n
representa a média das distâncias entre

cada amostra de dados ao vetor de pesos do neurônio de melhor correspondência (BMU)
mas não avalia a preservação topológica [Kohonen 2001]. O Erro topológico corresponde
à proporção de observações cujo segundo BMU não é vizinho, na grade neural, do pri-
meiro BMU. Neste caso, temos uma avaliação indireta e incompleta da preservação to-
pológica.

Dado A, uma grade retangular de dimensão dA, e M , um manifold M ⊆ ℜd.
Um mapa MA = (ΨA→M ,ΨM→A) de M é preservado topologicamente se ambos os
mapeamentos (ΨM→A) de M para A e (ΨA→M) de A para M são preservados em relação
à vizinhança.

• O mapeamento (ΨM→A) é preservado em relação à vizinhança se somente se a
localização dos vetores wi, wj que são adjacentes em M pertencem a vértices i, j
que são também adjacentes em A, segundo a norma máxima ||.||max.

• O mapeamento (ΨA→M) é preservado em relação à vizinhança se somente se a
localização dos vértices i, j que são adjacentes em A, de acordo com a norma eu-
clidiana ou de acordo com a soma das normas ||.||∑, estão relacionados a vetores
de pesos wi ,wj ∈M vizinhos.

Destacamos duas métricas que levam em consideração a preservação topológica
da rede neural SOM: a função topográfica [Villmann et al. 1997] e o erro combinado
[Kaski and Lagus 1996], adotadas na proposta de [Delgado et al. 2017] para escolha da
melhor rede SOM treinada.

2.2.1. Função topográfica

Para a grade de neurônios A, calcula-se a triangulação induzida de Delaunay DM , grafo
que conecta apenas os vetores de pesos wi e wj com regiões adjacentes no poliedro mas-
carado de Voronoi Ṽi, Ṽj , sendo que dDM

(i, j) representa a métrica associada à menor
distância entre dois neurônios i, j em DM e #{.} denota a cardinalidade do conjunto.
Define-se as funções de preservação topológica (ΨM→A) e (ΨA→M) conforme as Eqs.
fi(k)

def
= #{j| || i− j ||max > k; dDM

(i, j) = 1} e fi(−k)
def
= #{j| || i− j ||E =

1; dDM
(i, j) > k}.
Desse modo, a função fi(k) mede preservação da vizinhança do mapeamento de

M em A ao computar casos em que neurônios não vizinhos em A possuem uma relação
de vizinhança em DM segundo a métrica dDM

(i, j), enquanto a função fi(−k) mede a
preservação da vizinhança de A em M , ao contabilizar casos de neurônios vizinhos em A
que não sejam vizinhos em DM . Segundo [Villmann et al. 1997], a função topográfica ϕM

A

pode então ser definida como a média dos valores da função fi para todos componentes j
da grade de neurônios A, onde k = 1, ...,m− 1. Conforme descrito pela Eq. 2.



ϕM
A (k)

def
=


1

N

∑
j∈A

fj(k) k > 0

ϕM
A (1) + ϕM

A (−1) k = 0

1

N

∑
j∈A

fj(k) k < 0

(2)

Conforme [Delgado et al. 2017], o valor de ϕM
A para k = 0 representa a

combinação das medidas de não conformidades da preservação topológica fi(k) e fi(−k),
sendo portanto, usada como medida de referência da função topográfica. Quanto menor
ϕM
A (0) melhor a rede SOM preservou a topologia dos dados de entrada. Neste caso, à

medida que a rede SOM cresce a primeira medida tende a crescer, enquanto a segunda
tende a ser menor. Dessa forma, segundo [Delgado et al. 2017], uma medida anularia a
outra de forma que para a função topográfica não haveria correlação entre o número de
neurônios e o somatório destas duas medidas.

2.2.2. Erro cominado (EC)

Para uma dada amostra de dados xi, primeiro calculamos suas duas melhores unidades
correspondentes (BMUs), i∗1 e i∗2. Em seguida, calculamos a soma das distâncias eucli-
dianas de xi até o vetor protótipo wi∗2

do segundo BMU, começando com a distância
de xi a wb∗1

e, posteriormente, seguindo o caminho mais curto até wb∗2
, passando ape-

nas pelas unidades vizinhas no mapa. Seja p um caminho no mapa de comprimento
P >= 1, de p(0) = i∗1 a p(L) = i∗2, tal que p(k) e p(k + 1) devem ser vizinhos para
k = 0...P − 1. A distância ao longo do caminho mais curto no mapa é calculada como:
ECi =∥ xi − wi∗1

∥22 +min
p

∑P−1
k=0 ∥ wp(k+1) − wp(k) ∥22.

Por fim, o erro combinado (EC) é a média dessa distância sobre as amostras de
entrada: EC = 1

n

∑n
i=1ECi. Segundo [Delgado et al. 2017], à medida que a rede SOM

cresce (em termos de número de neurônios m) o erro de quantização diminui, assim como
a distância entre os BMUs, sugerindo forte correlação negativa entre esse ı́ndice e o ta-
manho m da rede neural.

2.3. Clusterização dos pesos W do mapa neural

Para clusterização dos pesos da rede neural SOM treinada optamos por avaliar os algo-
ritmos k-médias com a definição do melhor número de agrupamento a partir do método
de identificação automática do cotovelo no gráfico da soma da variação total intragrupos
para cada valor de c avaliado. Também aplicamos o algoritmo hierárquico aglomera-
tivo, definindo a melhor partição do dendograma a partir do ı́ndice Silhouette. Estes
dois algritmos de clusterização podem não ser adequados para todos os conjuntos de da-
dos, incluindo aqueles com elevada complexidade em termos de estrutura e distribuição
dos dados em cada um dos agrupamentos. Para isto avaliamos três algoritmos baseados
na segmentação dos neurônios da rede SOM treinada, considerando a mesma como um
grafo não-direcionado. Onde os neurônios i representam os nós do grafo, e as relações de
vizinhança que conecta os neurônios os vértices.



Dado uma rede treinada como um grafo G = (V,E), o algoritmo proposto por
[Costa and Netto 2003] visa eliminar as arestas consideradas inconsistentes e formar agre-
gados a partir dos nós(neurônios) que permanencerem conectados conforme o Algortimo
1. Neste algoritmo o número de agrupamentos c não é pré-determinado e temos três
parâmetros definidos empiricamente.

Algorithm 1 Clusterização proposta por [Costa and Netto 2003]
Require: G = (V,E) – SOM treinada como grafo não-orientado
Require: Hi – Nı́vel de ativação do neurônio i
Require: d(i, j) – Distância entre os pesos wi e wj da rede neural
Require: ω – Hiperparâmetro definido empiricamente

for cada par de neurônio adjacente (i, j), a aresta calculada será inconsistente se: do
• d(i, j) supera em duas unidades a distância média dos outros neurônios adja-

centes a i ou a j.
• i e j tiverem atividade H abaixo de 50% do mı́nimo permitido Hmin ou um dos

neurônios é inativo Hi = 0, dado Hmin = ωHmed, 0.1 ≤ ω ≤ 0.6 e Hmed =
n
m

.
• A distância entre os centróides dos conjuntos de dados associados aos neurônios
i e j excede por duas unidades a aresta d(i, j).

end for
Remove de arestas inconsistentes. Cada aresta inconsistente (i,j) resultará em uma
conexão nula no endereço (i, j) da matriz de adjacência.
Atribui rótulos distintos para cada conjunto de neurônios conectados.

O algoritmo proposto por [Silva and Costa 2011] (Algoritmo 2) segue a mesma
proposta do particionamento do grafo pela eliminação de arestas consideradas inconsistes
proposta por [Costa and Netto 2003]. No entanto, neste caso temos apenas um hiper-
parâmetro, v, definido empiricamente e que varia no intervalo 0 ≤ v ≤ 1.

Algorithm 2 Clusterização do SOM proposto por [Silva and Costa 2011]
Require: G = (V,E) – SOM treinada como grafo não-orientado

T ← Árvore Geradora Mı́nima de G usando D como pesos das arestas
for cada aresta (i, j) do

Calcule o ı́ndice Davis-Bouldin (DBI) para neurônios adjacentes i e j de acordo
com a topologia da rede neural

Se DBI(i, j) ≥ v então a aresta (i, j) é considerada inconsistente
end for
Associe um rótulo para cada grupo de nós conectados em G

[Silva et al. 2024] propõe a segmentação em k “clusters” baseando-se na distância
e na densidade entre neurônios. Primeiro, calcula-se a árvore geradora mı́nima de G
usando D como os pesos das arestas. Em seguida, calcula-se o custo de cada aresta de T ,
por meio do ı́ndice DBI. Por fim, poda-se k − 1 arestas de T com os menores custos e
atribui-se um rótulo de “cluster” para cada conjuto de nós conectados em T .

O algoritmo proposto por [Silva et al. 2024] primeiro calcula a Árvore de Ex-
tensão Mı́nima (MST), depois define o valor das arestas restantes como o DBI entre os
neurônios e poda k− 1 arestas com os menores custos, isolando grupos de neurônios. k é
um parâmetro a ser definido no inı́cio e significa o número de clusters que se deseja obter.



Algorithm 3 Clusterização do SOM proposto por [Silva et al. 2024]
Require: G = (V,E) – SOM treinada como grafo não-orientado
Require: H – Nı́vel de ativação do neurônio
Require: D – Matriz de distância entre os pesos W da rede neural
Require: c – Número desejado de agrupamentos

T ← Árvore Geradora Mı́nima de G usando D como pesos das arestas
for cada aresta (u, v) ∈ T do

cost(u, v)← DBI(u, v)
end for
Poda de c− 1 arestas em T com os menores custos
Associe um rótulo para cada grupo de nós conectados em T

3. Bases de dados avaliadas e procedimento experimental

Foram avaliadas quatro bases de dados de benchmark. O primeiro conjunto, Gaussiana, é
artificial e simula três conjuntos de dados (N = 100) em duas dimensões com distribuição
Gaussiana. O segundo conjunto é a base Iris [Fisher 1936] com 150 observações, quatro
dimensões, três classes, sendo duas não-linearmente separáveis. A terceira base de da-
dos é a Chainlink [Ultsch et al. 1994], com 1000 observações, tridimensional e com duas
classes que representam dois elos de corrente não-lineramente separáveis. A quarta base
é a MNIST [Deng 2012], com 10.000 observações, 248 dimensões e 10 classes que repre-
sentam os dı́gitos de 0 a 9.

O experimento seguiu as etapas descritas a seguir para cada base de dados anali-
sada:

1. Definição dos hiperparâmetros (raio inicial da função de vizinhança, taxa de
aprendizagem, tamanho da grade de neurônios, dimensionalidade e tipo de to-
pologia) que serão avalidos para as redes SOM avaliadas.

2. Logo após, para cada configuração de rede treinada, calcula-se os valores do
Erro combinado e da função topográfica. Foram avaliadas as correlações entre
os ı́ndices de qualidade de preservação topológica (erro combinado e função to-
pográfica) e o tamanho m da rede neural usada na clusterização.

3. Baseado em [Delgado et al. 2017], seleciona-se as redes com menor violação to-
pológica para cada tamanho de grade m, de acordo com o Erro combinado.

4. Em seguida, seleciona-se a rede com a menor violação de topologia, comparando
os valores de função topográfica obtidos para diferentes tamanhos de grade gera-
das pelo passo anterior.

5. Para efeito comparativo também foi selecionada para análise a pior rede SOM
conforme o método definido em [Delgado et al. 2017].

6. Aplica-se os cinco algoritmos de clusterização sobre as redes SOM selecionadas.
7. Como todas as bases de dados são rotuladas, para cada clusterização são calcula-

dos os ı́ndices de qualidade da clusterização NMI, ARI e ACC.
8. Foi aplicado teste estatı́stico de correlação entre os ı́ndices de mensuração da qua-

lidade da preservação topológica (erro cominado e função topográfica) e o tama-
nho da rede m.



4. Resultados e Discussão

Para todas as bases de dados foram avaliadas redes neurais SOM bi e unidimensional, com
grade hexagonal e retangular, função de vizinhança gaussiana, diferentes raios iniciais
para essa função (0.5, 1.0, 1.5, 2.0, 2.5, 3.0) e diferentes taxas de aprendizagem para a
aprendizagem sequencial (0.01, 0.05, 0.1, 0.5). Para as bases Iris, Gaussian e Chainlink
foram variadas as dimensões da rede SOM ((5×4), (5×5), (6×5), (1×30), (5×7), (8×
5), (8× 6), (9× 6), (9× 7), (10, 8)), para a base MNIST foram avaliadas redes um pouco
maiores ((8× 8), (15× 10), (20× 20), (25× 30), (30× 30)).

Para cada uma dessas bases foi escolhida a melhor rede SOM a partir do critério
estabelecido por [Delgado et al. 2017]. Para o dataset Gaussiano foi definida como a
melhor a seguinte configuração de rede SOM 2D 10× 8 com raio inicial igual a 3.0, taxa
de aprendizagem igual a 0.5 e topologia retangular. Para as bases Chainlink e Iris foi
definida como a melhor rede SOM a configuração bidimensional 10 × 8 com raio inicial
igual a 2.0, taxa de aprendizagem igual a 0.5 e topologia retangular.

A análise do teste de correlação entre os ı́ndices de qualidade da rede SOM (Erro
combinado e Função topográfica) mostra que a correlação negativa prevista para o Erro
combinado foi de menor intensidade e não estatisticamente significativa para todas as ba-
ses de dados (Tabela 1). Isto sugere que a componente topológica do indicador (caminho
entre o primeiro e segundo BMU) não decresce linearmente à medida que a rede SOM (m)
cresce. Enquanto que para o valor para a função topográfica observamos forte correlação
positiva e significativa para todas as bases. Isto sugere que uma das componentes (fi(k) e
fi(−k)) desse ı́ndice cresce mais que a outra, trazendo como consequência a não anulação
do efeito do tamanho da rede SOM.

Tabela 1. Teste de correlação (Cor) entre o Erro combinado (Ec) e a função to-
pográfica (Ft) e o número de neurônios (m). Entre colchetes temos o intervalo de
confiança ao nı́vel de 95% para a estatı́stica de correlação.

Dado Cor( Ec, m) Cor( Ft, m)
Gaussian -0.10 [-0.28, 0.08] -0.83*** [-0.88, -0.77]
Chainlink -0.46*** [-0.59, -0.31] -0.79*** [-0.85 -0.71]
Iris -0.24** [-0.40, -0.06] -0.80*** [-0.86 -0.73]
MNIST -0.25 [-0.48, 0.002] -0.75*** [-0.85 -0.62]

A Tabela 2 mostra os resultados das clusterizações para a melhor e pior redes
neurais indicadas pelo método proposto por Delgado et al. (2017) tanto em termos do
número c de grupos encontrados como em termos dos ı́ndices NMI, ARI e ACC. Os
resultados nos permitem afirmar que o método proposto por [Delgado et al. 2017] auxi-
lia na identificação redes neurais SOM que melhor preservam a topologia dos dados de
entrada, embora o desempenho do algoritmo de clusterização dependa das caracterı́sticas
dos dados de entrada. Para a base Gaussian os melhores desempenhos foram obtidos pelos
algoritmos de clusterização hierárquico aglomerativo e k-médias, para a base Chainlink
o melhor desempenho foi obtido pelo algoritmo proposto por [Silva et al. 2024], para a
base Iris o melhor desempenho foi obtido pelo algoritmo k-médias. Para a base MNIST
o método hierárquico aglomerativo obteve o melhor resultado.



Tabela 2. Resultados da clusterização dos dados a partir dos cinco algoritmos
avaliados usando os ı́ndices NMI, ARI e ACC como indicadores da qualidade da
partição em c grupos para a melhor e pior redes SOM indicada pelo método pro-
posto por Delgado et al. (2017). Os melhores clusterizadores para cada conjunto
de dados estão destacados em negrito.

Base Algoritmo de clusterização Melhor rede SOM Pior rede SOM
c NMI ARI ACC c NMI ARI ACC

Gaussian

K-means 3 0.85 0.81 0.95 3 0.86 0.89 0.96
H.A. 3 0.87 0.83 0.96 3 0.86 0.89 0.96
Silva et al. (2024) 3 0.42 0.52 0.62 3 0.31 0.17 0.54
Silva e Costa (2011) 14 0.44 0.57 0.56 4 0.73 0.70 0.82
Costa e Netto (2003) 2 0.04 0.06 0.44 1 0.00 0.00 0.33

Chainlink

K-means 4 0.25 0.34 0.44 4 0.30 0.20 0.42
H.A. 9 0.19 0.41 0.28 8 0.50 0.25 0.30
Silva et al. (2024) 5 0.75 0.72 0.86 2 0.21 0.09 0.65
Silva e Costa (2011) 14 0.10 0.31 0.24 4 0.43 0.31 0.60
Costa e Netto (2003) 4 0.67 0.69 0.73 1 0.00 0.00 0.50

Iris

K-means 3 0.76 0.77 0.91 4 0.72 0.65 0.83
H.A. 2 0.56 0.73 0.67 2 0.73 0.57 0.67
Silva et al. (2024) 3 0.56 0.71 0.68 3 0.68 0.54 0.67
Silva e Costa (2011) 9 0.19 0.33 0.41 4 0.60 0.51 0.70
Costa e Netto (2003) 8 0.23 0.41 0.54 1 0.0 0.0 0.33

MNIST

K-means 8 0.52 0.68 0.66 5 0.49 0.31 0.45
H.A. 10 0.60 0.75 0.72 10 0.78 0.65 0.77
Silva et al. (2024) 13 0.002 0.09 0.14 3 0.22 0.05 0.20
Silva e Costa (2011) 60 0.31 0.63 0.35 9 0.60 0.28 0.48
Costa e Netto (2003) 1 0.00 0.00 0.10 1 0.00 0.00 0.10

5. Conclusões

Conclui-se que o método de seleção da melhor rede SOM proposto por
[Delgado et al. 2017] é satisfatório, mas que foi observada correlação negativa entre o
tamanho m da rede SOM e a função topográfica ϕM

A (0), que acaba induzindo como esco-
lha da melhor rede SOM aquela com o maior número de neurônios.

Observou-se que o desempenho do clusterizador dos pesos da rede SOM depende
das caracterı́sticas do dado de entrada. Sendo que o k-means obteve os melhores resul-
tados para as bases Gaussian e Iris, o método hierárquico aglomerativo para as bases
Gaussian e MNIST e o método proposto por [Silva et al. 2024] para a base Chainlink.

Trabalhos futuros incluem a avaliação de outros métodos de avaliação da qua-
lidade do SOM quanto ao ajuste aos dados e à preservação topológica, a aplicação do
método de seleção dos hiperparâmetros em bases de dados mais complexas em termos de
dimensionalidade e não-linearidade, e avaliação de outros métodos de clusterização dos
dados a partir da segmentação da rede neural SOM.
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